yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting the meaning of the derivative in context | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're told that Eddie drove from New York City to Philadelphia. The function ( d ) gives the total distance Eddie has driven in kilometers ( t ) hours after he left. What is the best interpretation for the following statement: ( d' ) of 2 is equal to 100?

So, pause this video and I encourage you to write it out. What do you think this means? Be sure to include the appropriate units.

All right, now let's do this together. If ( d ) is equal to the distance driven, then to get ( d' ), you're taking the derivative with respect to time. So one way to think about it is it is the rate of change of ( d ).

We could view this as ( d' ) giving you the instantaneous rate, and they are both functions of ( t ). One way to interpret ( d' ) of 2 is equal to 100 would mean: well, what is our time now? Well, that is our ( t ), and that's in hours, so two hours.

Actually, let me color code it: so two hours after leaving, Eddie drove. This means, let me be grammatically correct, drove at an instantaneous rate of, and let me use a different color now for this part, 100.

And what are the units? Well, the distance was given in kilometers, and now we're going to be thinking about kilometers per unit time: kilometers per hour. So this is 100 kilometers per hour.

That's the interpretation there. Let's do another example. Here we are told a tank is being drained of water. The function ( v ) gives the volume of liquid in the tank in liters after ( t ) minutes. What is the best interpretation for the following statement: the slope of the line tangent to the graph of ( v ) at ( t = 7 ) is equal to negative 3?

So pause this video again and try to do what we just did with the previous example. Write out that interpretation; make sure to get the units right.

All right, so let's just remind ourselves what's going on. ( v ) is going to give us the volume as a function of time. Volume is in liters and time is in minutes.

So if they're talking about the slope of the tangent line to the graph, the slope of the tangent line to the graph of ( v ) that's just ( v' ). If you take the derivative with respect to time, that's going to give you ( v' ), and these are all functions of ( t ).

They say at ( t = 7 ), it's equal to negative 3. This, which is the same thing as the slope of the tangent line, tells us that ( v' ) at time equals 7 minutes, our rate of change of volume with respect to time is equal to negative 3.

You could say, if we were to write it out, this means that after seven minutes, the tank is being drained at an instantaneous rate. That's why we need that calculus for that instantaneous rate.

At an instantaneous rate of, now you might be tempted to say it's being drained at an instantaneous rate of negative 3 liters per minute, but remember the negative 3 just shows that the volume is decreasing.

So one way to think about it is this negative is already being accounted for when you're saying it's being drained. If this was positive, that means it is being filled.

So it is being drained at an instantaneous rate of 3 liters per minute. And how did I know the units were liters per minute? Well, the volume function is in terms of liters and the time is in terms of minutes.

Then, I'm taking the derivative with respect to time, so now it's going to be liters per minute. And we are done.

More Articles

View All
Deadly Waters: Crocodiles and Adventure | Edge of the Unknown on Disney+
[MUSIC PLAYING] Most rivers, when you get to a calm section, you can rest a little bit. But on Murch, that calm, flat water is definitely more terrifying than any of the white water. MAN: Being a kayaker in Central Africa, inevitably, you’re going to hav…
How Much Information?
Have you ever noticed that people speaking Spanish sound like they’re talking really fast? Does this mean they are able to communicate information faster than English speakers? One reason why Spanish sounds so fast is because more syllables are spoken per…
Introduction to powers of 10
In this video, I’m going to introduce you to a new type of mathematical notation that will seem fancy at first, but hopefully, you’ll appreciate is pretty useful and also pretty straightforward. So let’s just start with some things that we already know. …
How Finding This Human Ancestor Is Making Us Rethink Our Origins | Nat Geo Live
MARINA ELLIOT: Homo Naledi’s story is changing our story, the story of human origins. And, in fact, this discovery is changing how paleoanthropologists and scientists think about and craft the story of our past. (audience applause) All of you have actuall…
What Your Net Worth Should Be By Every Age (Individual)
Everyone wants to be rich, but if you ask anyone how much they’re worth, 99% of them can’t tell you. That’s the thing about building wealth: you can’t grow what you don’t measure. Net worth is how you measure someone’s wealth. Think of it like this: if y…
Why Buying Coffee Makes You Poor
What’s up, you guys? It’s Graham here. So let’s dive into one of the most controversial and debated topics of financial advice in 2019, and that would be whether or not this cup of coffee is making you poor. That’s right! Today we’re gonna be talking abou…