yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification.

All right, pause this video and see if you can figure that out.

So the key to using the mean value theorem, even before you even think about using it, you have to make sure that you are continuous over the closed interval and differentiable over the open interval. So this is the open interval here, and then the closed interval would include the endpoints. But you might immediately realize that both of these intervals contain x equals 0, and at x equals 0 the function is undefined. And if it's undefined there, well, it's not going to be continuous or differentiable at that point.

And so no, not continuous or differentiable over the interval.

All right, let's do the second part. Can we use the mean value theorem to say that there is a value c such that g prime of c is equal to negative one half and one is less than c is less than two? If so, write a justification.

So pause the video again.

All right, so in this situation between 1 and 2 on both the open and the closed intervals, well, this is a rational function, and a rational function is going to be continuous and differentiable at every point in its domain. And its domain completely contains this open and closed interval. Or another way to think about it: every point on this open interval and on the closed interval is in the domain.

So we can write g of x is a rational function, which lets us know that it is continuous and differentiable at every point in this domain, at every point in its domain. The closed interval from 1 to 2 is in domain.

And so now let's see what the average rate of change is from 1 to 2.

And so we get g of two minus g of one over two minus one is equal to one half minus one over one, which is equal to negative one half.

Therefore, by the mean value theorem, there must be a c where one is less than c is less than two, and g prime of c is equal to the average rate of change between the endpoints, negative one half.

And we're done. So we could put a big yes right over there, and then this is our justification.

More Articles

View All
Binompdf and binomcdf functions | Random variables | AP Statistics | Khan Academy
What we’re going to do in this video is use a graphing calculator to answer some questions dealing with binomial random variables. This is useful because if you’re taking the AP Stats, the Advanced Placement Statistics test, you are allowed to use a graph…
Constrained optimization introduction
Hey everyone! So, in the next couple videos, I’m going to be talking about a different sort of optimization problem: something called a constrained optimization problem. An example of this is something where you might see — you might be asked to maximize…
How have congressional elections changed over time? | US government and civics | Khan Academy
How have congressional elections changed over time? Congressional elections used to be separate from the presidential elections. One of the great examples is in 1938. FDR, who we all look back and think of as a president who had such extraordinary power a…
How to Build Products Users Love with Kevin Hale (How to Start a Startup 2014: Lecture 7)
All right, so um when I talk about making products users love, um what I mean specifically is like how do we make things that has a passionate user base that um our users are unconditionally wanting it to be successful both on the products that we build b…
Additive and multiplicative relationships
We are told that Miguel and a group of friends play soccer during recess each day. More students join them to play. The table below shows the relationship between the number of students joining Miguel and his friends and the total number of students playi…
Graphical impact of cost changes on marginal and average costs
In the last video, we numerically studied how changes in productivity or cost might affect your marginal cost, your average variable cost, your average fixed cost, or your average total cost. In this video, we’re going to think about it visually. So, we …