yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification.

All right, pause this video and see if you can figure that out.

So the key to using the mean value theorem, even before you even think about using it, you have to make sure that you are continuous over the closed interval and differentiable over the open interval. So this is the open interval here, and then the closed interval would include the endpoints. But you might immediately realize that both of these intervals contain x equals 0, and at x equals 0 the function is undefined. And if it's undefined there, well, it's not going to be continuous or differentiable at that point.

And so no, not continuous or differentiable over the interval.

All right, let's do the second part. Can we use the mean value theorem to say that there is a value c such that g prime of c is equal to negative one half and one is less than c is less than two? If so, write a justification.

So pause the video again.

All right, so in this situation between 1 and 2 on both the open and the closed intervals, well, this is a rational function, and a rational function is going to be continuous and differentiable at every point in its domain. And its domain completely contains this open and closed interval. Or another way to think about it: every point on this open interval and on the closed interval is in the domain.

So we can write g of x is a rational function, which lets us know that it is continuous and differentiable at every point in this domain, at every point in its domain. The closed interval from 1 to 2 is in domain.

And so now let's see what the average rate of change is from 1 to 2.

And so we get g of two minus g of one over two minus one is equal to one half minus one over one, which is equal to negative one half.

Therefore, by the mean value theorem, there must be a c where one is less than c is less than two, and g prime of c is equal to the average rate of change between the endpoints, negative one half.

And we're done. So we could put a big yes right over there, and then this is our justification.

More Articles

View All
A Little Redneck Ingenuity | Port Protection
Blade spring and all, it’s the time to get prepared for the upcoming winter. You just can’t run down to the hardware store and get what you need; you have to go out and work for it physically, and it takes a lot of time. Eighteen-year resident Tim Curley…
Constant of proportionality from graph | 7th grade | Khan Academy
The following graph shows a proportional relationship. What is the constant of proportionality between y and x in the graph? Pause this video and see if you can figure that out. All right, now let’s do this together and let’s remind ourselves what a cons…
Introduction to dividing by 2 digits
What we’re going to do in this video is start trying to divide by two-digit numbers. As we’ll see, this is a super important skill that a lot of the rest of mathematics will build off of. But it’s also interesting because it’s a bit of an art. So let’s ju…
Khan Academy for Texas Administrators Webinar 7.18.2024
Hello everyone! Welcome! Thank you for joining. We are going to get started in about 10 seconds. There are a lot of people pouring into the room, so you are here to see what Khan Academy has done to support Texas teachers. We’re so excited to be addressin…
The insanely scary "Tailless Whip Scorpion" - Smarter Every Day 77
Are you about to grab that with your mother? What the quick? Oh golly, what is this? Call the tailless whip. Let’s whip scorpion. Let me grab it with my hand. It’s fighting them. It’s fighting! Oh fighting! What is going on? Describe what you’re feeling.…
STOIC PRINCIPALS ON HOW TO MAKE THEM MISS YOU BADLY | STOICISM INSIGHTS
Welcome back to Stoicism Insights, your guide to ancient wisdom in the modern world. Today, we’re diving into a topic that might surprise you: how Stoic principles can make others miss you badly. Yes, you heard it right. The timeless wisdom of Stoicism h…