yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification.

All right, pause this video and see if you can figure that out.

So the key to using the mean value theorem, even before you even think about using it, you have to make sure that you are continuous over the closed interval and differentiable over the open interval. So this is the open interval here, and then the closed interval would include the endpoints. But you might immediately realize that both of these intervals contain x equals 0, and at x equals 0 the function is undefined. And if it's undefined there, well, it's not going to be continuous or differentiable at that point.

And so no, not continuous or differentiable over the interval.

All right, let's do the second part. Can we use the mean value theorem to say that there is a value c such that g prime of c is equal to negative one half and one is less than c is less than two? If so, write a justification.

So pause the video again.

All right, so in this situation between 1 and 2 on both the open and the closed intervals, well, this is a rational function, and a rational function is going to be continuous and differentiable at every point in its domain. And its domain completely contains this open and closed interval. Or another way to think about it: every point on this open interval and on the closed interval is in the domain.

So we can write g of x is a rational function, which lets us know that it is continuous and differentiable at every point in this domain, at every point in its domain. The closed interval from 1 to 2 is in domain.

And so now let's see what the average rate of change is from 1 to 2.

And so we get g of two minus g of one over two minus one is equal to one half minus one over one, which is equal to negative one half.

Therefore, by the mean value theorem, there must be a c where one is less than c is less than two, and g prime of c is equal to the average rate of change between the endpoints, negative one half.

And we're done. So we could put a big yes right over there, and then this is our justification.

More Articles

View All
Power rule (with rewriting the expression) | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some practice taking derivatives with the power rule. So let’s say we need to take the derivative with respect to x of 1 over x. What is that going to be equal to? Pause this video and try to figure it out. So…
DESTROYING all my credit cards with a FLAMETHROWER
What’s up you guys? It’s Graham here. So after reading all of the comments on the unboxing video of the JP Morgan Reserve credit card, I came to the realization that credit cards are evil. So I’m gonna be destroying all of my credit cards today and seeing…
An AI Primer with Wojciech Zaremba
Hey, today we have voice check Zaremba, and we’re going to talk about AI. So, Voiture, could you give us a quick background? I’m a founder at OpenAI, and I’m working on robotics. I think that deep learning and AI is a great application for robotics. Prio…
The Real Problem With AI ✨
Evil artificial intelligence might try to take over the world. You shouldn’t trust anything it says. Well, first, the AI would attempt to gain access to as many technological systems as possible. Then, it would study us, gathering data and identifying our…
Extending geometric sequences | Mathematics I | High School Math | Khan Academy
So we’re told that the first four terms of a geometric sequence are given. They give us the first four terms. They say, what is the fifth term in the sequence? And like always, pause the video and see if you can come up with the fifth term. Well, all we …
Adding mixed numbers with like denominators
What we’re going to do in this video is to start thinking about adding mixed numbers. Now, just as a reminder, what a mixed number is, it’d be something like 3 and 2⁄8. It’s called mixed because part of the way we represent this number is as a whole numbe…