yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification.

All right, pause this video and see if you can figure that out.

So the key to using the mean value theorem, even before you even think about using it, you have to make sure that you are continuous over the closed interval and differentiable over the open interval. So this is the open interval here, and then the closed interval would include the endpoints. But you might immediately realize that both of these intervals contain x equals 0, and at x equals 0 the function is undefined. And if it's undefined there, well, it's not going to be continuous or differentiable at that point.

And so no, not continuous or differentiable over the interval.

All right, let's do the second part. Can we use the mean value theorem to say that there is a value c such that g prime of c is equal to negative one half and one is less than c is less than two? If so, write a justification.

So pause the video again.

All right, so in this situation between 1 and 2 on both the open and the closed intervals, well, this is a rational function, and a rational function is going to be continuous and differentiable at every point in its domain. And its domain completely contains this open and closed interval. Or another way to think about it: every point on this open interval and on the closed interval is in the domain.

So we can write g of x is a rational function, which lets us know that it is continuous and differentiable at every point in this domain, at every point in its domain. The closed interval from 1 to 2 is in domain.

And so now let's see what the average rate of change is from 1 to 2.

And so we get g of two minus g of one over two minus one is equal to one half minus one over one, which is equal to negative one half.

Therefore, by the mean value theorem, there must be a c where one is less than c is less than two, and g prime of c is equal to the average rate of change between the endpoints, negative one half.

And we're done. So we could put a big yes right over there, and then this is our justification.

More Articles

View All
5 Secrets You Shouldn't Share with Others | STOICISM INSIGHTS #stoicism
Welcome back to Stoicism Insights, your guide to unlocking the timeless wisdom of Stoic philosophy for a more fulfilling life. In this video, I’ll be addressing certain personal matters and situations that are best kept private, things that don’t serve an…
Squishy Robot Fingers: A Breakthrough for Underwater Science | National Geographic
We’re in the northern part of the Red Sea, and the reason we’re here is we’re trying to test out our squishy robot fingers for the first time in a reef. So we tested these squishy fingers in a swimming pool, and now we wanted to put them to the true test…
Bitcoin Is About To Snap
What’s up Grandma! It’s guys here, so we gotta bring attention to a topic that, in my opinion, is not getting enough recognition. Which I think is surprising because this has the potential to completely change the trajectory in terms of how we transact mo…
Make Luck Your Destiny
I think it’s pretty interesting that the first three kinds of luck that you described, there are very common clichés for them that everybody knows. And then for that last kind of luck, that comes to you out of the unique way that you act, there’s no real …
Brave New Words - Ethan Mollick & Sal Khan
Hi everyone, it’s here from Khan Academy, and as some of you all know, I have released my second book, “Brave New Words,” about the future of AI in education and work. It’s available wherever you might buy your books. But as part of the research for that …
How to Photograph the Night Sky | National Geographic
I’m Bubba Wallace and I am a NASCAR race car driver. Photography is a hobby that I love to do. Definitely a good counterbalance to the fast-paced life that I live. We are in Gooseberry Mesa, Utah, to capture some nighttime astrophotography with a new frie…