yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification.

All right, pause this video and see if you can figure that out.

So the key to using the mean value theorem, even before you even think about using it, you have to make sure that you are continuous over the closed interval and differentiable over the open interval. So this is the open interval here, and then the closed interval would include the endpoints. But you might immediately realize that both of these intervals contain x equals 0, and at x equals 0 the function is undefined. And if it's undefined there, well, it's not going to be continuous or differentiable at that point.

And so no, not continuous or differentiable over the interval.

All right, let's do the second part. Can we use the mean value theorem to say that there is a value c such that g prime of c is equal to negative one half and one is less than c is less than two? If so, write a justification.

So pause the video again.

All right, so in this situation between 1 and 2 on both the open and the closed intervals, well, this is a rational function, and a rational function is going to be continuous and differentiable at every point in its domain. And its domain completely contains this open and closed interval. Or another way to think about it: every point on this open interval and on the closed interval is in the domain.

So we can write g of x is a rational function, which lets us know that it is continuous and differentiable at every point in this domain, at every point in its domain. The closed interval from 1 to 2 is in domain.

And so now let's see what the average rate of change is from 1 to 2.

And so we get g of two minus g of one over two minus one is equal to one half minus one over one, which is equal to negative one half.

Therefore, by the mean value theorem, there must be a c where one is less than c is less than two, and g prime of c is equal to the average rate of change between the endpoints, negative one half.

And we're done. So we could put a big yes right over there, and then this is our justification.

More Articles

View All
Kathryn Minshew at Female Founders Conference 2014
So next you’re gonna meet Kathryn Minshew. Fun fact, when she was a kid, Kathryn wanted to be Zorro. Now, Kathryn is founder and CEO of The Muse, a career platform and job discovery tool. Kathryn was part of the YC Winter 2012 batch. Please welcome Kathry…
2015 AP Calculus AB 2a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let f and g be the functions defined by ( f(x) = 1 + x + e^{x^2 - 2x} ) and ( g(x) = x^4 - 6.5x^2 + 6x + 2 ). Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above. So here I have the graphs of the two functions, and …
Ask Sal Anything! Homeroom Tuesday, August 11
Hi everyone! Sal here. Welcome to the, I guess, Homeroom with Sal, uh, live stream. The name keeps evolving a little bit. A couple of quick announcements. First of all, uh, we were hoping to have Lester Holt today, uh, but him being in the news industry,…
TIL: Wild Lions Live in India | Today I Learned
[Music] Most people think about lions in Africa, but very few people know that they actually exist in India too. It looks, uh, not very different from the African lion. It is, however, a bit smaller. It does have flappy skin on the stomach that looks diff…
Examples thinking about multiplying even and odd numbers
We are told Liam multiplies two numbers and gets an even product. What could be true about the numbers Liam multiplied? It says choose two answers, so pause this video and see if you can figure out which two of these could be true. All right, now let’s d…
my productive routine in Dubai
Good morning, my people! Today, I thought, let me take you through my morning routine that I’ve been doing for a while, and that really works for me. I feel like this is like the only morning routine that actually works for me. Good morning! It’s 8:30; it…