yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the mean value theorem to say that the equation g prime of x is equal to one half has a solution where negative one is less than x is less than two? If so, write a justification.

All right, pause this video and see if you can figure that out.

So the key to using the mean value theorem, even before you even think about using it, you have to make sure that you are continuous over the closed interval and differentiable over the open interval. So this is the open interval here, and then the closed interval would include the endpoints. But you might immediately realize that both of these intervals contain x equals 0, and at x equals 0 the function is undefined. And if it's undefined there, well, it's not going to be continuous or differentiable at that point.

And so no, not continuous or differentiable over the interval.

All right, let's do the second part. Can we use the mean value theorem to say that there is a value c such that g prime of c is equal to negative one half and one is less than c is less than two? If so, write a justification.

So pause the video again.

All right, so in this situation between 1 and 2 on both the open and the closed intervals, well, this is a rational function, and a rational function is going to be continuous and differentiable at every point in its domain. And its domain completely contains this open and closed interval. Or another way to think about it: every point on this open interval and on the closed interval is in the domain.

So we can write g of x is a rational function, which lets us know that it is continuous and differentiable at every point in this domain, at every point in its domain. The closed interval from 1 to 2 is in domain.

And so now let's see what the average rate of change is from 1 to 2.

And so we get g of two minus g of one over two minus one is equal to one half minus one over one, which is equal to negative one half.

Therefore, by the mean value theorem, there must be a c where one is less than c is less than two, and g prime of c is equal to the average rate of change between the endpoints, negative one half.

And we're done. So we could put a big yes right over there, and then this is our justification.

More Articles

View All
AI and bad math
What we’re going to see in this video is that the current versions of artificial intelligence are not always perfect at math, and we’re going to test this out. I created a simple math tutor on Chat GPT here, and what we’re going to do is see if it can hel…
Conditional probability and independence | Probability | AP Statistics | Khan Academy
James is interested in weather conditions and whether the downtown train he sometimes takes runs on time. For a year, James records weather each day: is it sunny, cloudy, rainy, or snowy, as well as whether this train arrives on time or is delayed. His re…
Multiplying and dividing by powers of 10
In another video, we introduce ourselves to the idea of powers of 10. We saw that if I were to just say 10 to the first power, that means that we’re just really just going to take 1. If we have 10 to the second power, that means that we’re going to take …
2015 AP Calculus BC 5b | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Let k equal four so that f of x is equal to one over x squared minus four x. Determine whether f has a relative minimum, a relative maximum, or neither at x equals two. Justify your answer. All right, well, if f of x is equal to this, then f prime of x. …
Supplemental insurance | Insurance | Financial literacy | Khan Academy
So let’s talk a little bit about supplemental insurance. Now, it is what the words describe it as; it is a supplement to usually some other existing insurance. It’s insurance above and beyond things that you might already have. So there’s a lot of exampl…
Real Estate Investing 101: Top 5 Most PROFITABLE Renovations
What’s up, you guys? It’s Graham here. So, I’m here with this special guest. Some of you may have met him before, but those that haven’t should probably meet Kevin. We’re gonna be talking about the most profitable renovations that you can be doing. Anytim…