yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example punnet square for sex-linked recessive trait | High school biology | Khan Academy


3m read
·Nov 11, 2024

Hemophilia is an X-linked recessive trait that affects blood clotting. If someone has hemophilia, their blood has trouble clotting. If a carrier woman and a hemophiliac man have a daughter, what is the percent chance that she, the daughter, will have hemophilia? So if you're so inspired, pause this video and try to work through this on your own.

Alright, now let's work through this together. To do this, let's think about the genotypes of both the mother and the father. So let's start with the mother. Since it is an X-linked recessive trait, we're going to be dealing with the sex chromosomes.

Let's just remind ourselves that the mother, because she's female, is going to be XX; she has two X chromosomes. The father is going to have an X chromosome and a Y chromosome. But now let's think about the hemophilia. They say it’s a carrier woman. A carrier woman means that one of her two X chromosomes would have the hemophilia allele, and the other one wouldn't.

Carrier implies that she doesn't show the trait; she doesn't have hemophilia, but she's carrying one of these X-linked recessive hemophilia alleles. So we could say that one of her chromosomes, one of her X chromosomes, does not have hemophilia. I use capital H for the dominant allele, which you would say is no hemophilia. We tend to use the capital for the dominant and then the lowercase h, where this would be the X chromosome that has the hemophilia allele, and I denote it lowercase h because it is a recessive trait. So, this is hemophilia.

Now what about the father? Well, it’s X-linked, and the father only has one X chromosome. They say it’s a hemophiliac man, and so that one X chromosome is going to have the hemophilia allele. The reason why he exhibits hemophilia is that there is no other X chromosome with the dominant allele to be dominant over the hemophilia allele.

But now let's cross these two with a Punnett square. The father, to the offspring, could contribute the X chromosome that has the hemophilia allele or a Y chromosome. The mother can contribute the X chromosome that doesn't have the hemophilia allele or the X chromosome that does have the hemophilia allele.

Now I'll draw my little Punnett square here. So there you go. What are the different scenarios? Well, this top-left scenario would be I get the X chromosome from the mother that does not have the hemophilia allele and I get the X chromosome from the father that does have the hemophilia allele.

This scenario is the X chromosome from the mother with the hemophilia allele and the X chromosome from the father with the hemophilia allele. This scenario is the X chromosome from the mother without the hemophilia allele (so, no hemophilia) or with the non-hemophilia allele and the Y chromosome from the father. And this is the X chromosome from the mother that has the hemophilia and the Y chromosome from the father.

Now, what is the percent chance that she, that a daughter, would have hemophilia? So, which of these scenarios shows a daughter? Well, the daughters are going to be the XX scenarios. These are the two scenarios in which they have a daughter—these two—because there are Y chromosomes, and these would be them having a son.

So out of the two scenarios where they have a daughter, one of those scenarios shows you have two of the recessive alleles. This is a situation where you have a daughter with hemophilia right over here. If we know they have a daughter, what is the percent chance that she will be hemophiliac? Well, one out of two, so there is a 50% chance.

Now, what's useful about this Punnett square is you could answer all sorts of questions. You could say, what is the percent chance that they have a hemophiliac son? Well, one out of these four scenarios is a hemophiliac son, then you would say there's a 25% chance that they have a hemophiliac son.

Similarly, there is a 25% chance that they have a non-hemophiliac son. If someone said, what is the percent chance that they have a hemophiliac offspring? Well, that would be these two scenarios right over here. So, two out of the four scenarios are hemophiliac offspring, so that would be 50%.

If you said, given that they had a son, what is the percent chance that they don't have hemophilia? Well, you would say given that they have a son, so that would be those two scenarios; one out of those two scenarios, the son does not have hemophilia, so that would again be a 50%.

So anyway, hopefully, this was useful.

More Articles

View All
An Experiment With YouTube Comments…
Hello Internet. I’m here to talk about an experiment on the channel. There’s a problem on YouTube; see down in the comments, there are so many scambots and sexbots and sexbots and scambots. I don’t know what the deal is. It’s been a problem for years that…
Which Shape CUTS BEST? (Weed Eater Line at 100,000 Frames Per Second) - Smarter Every Day 238
My name is Destin. This is Smarter Every Day. I did a video previously on this channel about how a weed eater line breaks when you go up against something like, I don’t know, a chain link fence or something like that. Aw, that’s awesome. That’s awesome. …
Applying the chain rule and product rule | Advanced derivatives | AP Calculus AB | Khan Academy
What we’re going to do in this video is try to find the derivative with respect to X of (x^2 \sin(X)) all of that to the third power. And what’s going to be interesting is that there are multiple ways to tackle it. I encourage you to pause the video and …
5 Philosophical Questions Without Satisfying Answers
Some questions have been keeping humanity busy since the dawn of time. Moreover, complete civilizations and religions have been built around these questions. No matter how much we have debated, researched, and observed, there just doesn’t seem to be a sat…
How does voter turnout in midterms compare to presidential elections? | Khan Academy
How does voter turnout in midterms compare to presidential elections? Traditionally, midterm elections have been years in which the voter turnout is much lower than a presidential election. Particularly in recent history, the American political scene has …
Why Should I Start a Startup? by Michael Seibel
Alright, Michael Seibel. So today, we’re gonna do something different and talk about a few of the essays you’ve worked on in the past. I think these are maybe the past two years. Yes, so the first one is “Why Should I Start a Startup?” You start this ess…