yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding equivalent ratios in similar quadrilaterals | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We are told Lucas dilated quadrilateral ABCD to create quadrilateral WXYZ. So it looks like he rotated and zoomed in or made it or expanded it to get this other quadrilateral. The fact that we used these types of transformations like a dilation and it looks like a quad rotation as well, it tells us that these are similar to each other. They are similar, similar quadrilaterals.

So based on that, which proportion must be true? Pause this video and see if you can work that through on your own before we do this together.

All right, now let's do this together. So for my brain, and given that I have access to a very nice palette of colors, what I want to do is color the corresponding sides the same. So let's think about side CD here. We know that this point, or this angle right over here with one arc corresponds to this angle, and then this other angle with the double arcs is right over there.

So this side YZ corresponds to side CD. Then we could say, all right, going from the right angle over here to the point C, that would correspond to going from the right angle to the point Y in this other quadrilateral. Maybe I'll use red for this one. Going from B to A would correspond to going from X to W.

These are corresponding sides, and then last but not least, side AD corresponds to side ZW. That'll help us keep track of what's going on here. So this first one has the length of segment CD. The length of segment CD. The ratio between that and BC, and BC is my blue one, or my teal color, I should say.

BC, they're saying that's the same as XY, which is in teal, to YZ. Well, this one isn't feeling right. In order for this to be true, you would have to flip one of these ratios because, once again, my pink one to blue one on this quadrilateral should be the same. It should be pink to blue on the other quadrilateral, not blue to pink. That is one way to think about it, so let's rule out that one.

Now, let's see. We have the ratio between CD and BC is the same as the ratio between XY and WX. Well, this isn't even using corresponding sides right over here, so let's rule that one out. All right, next we have the ratio between CD and YZ, so those are corresponding sides. Then they're saying that should be equal to BC over WZ. BC over WZ. Well, WZ is not corresponding to BC, so I'll rule that out.

So just deductive reasoning would tell us that this is likely our choice. But let's work through it. So they're saying the ratio of CD to YZ, CD to YZ, is the same as the ratio of BC, BC to XY. So yes, this is ratios of corresponding sides, so this proportion must be true.

More Articles

View All
Charlie Munger: How Our Simple Method Effortlessly Beats The Market
If you’re a young investor and you can sort of stand back and value stocks as businesses and invest when things are very cheap no matter what anybody is saying on television or what you’re reading, and perhaps if you wish sell when people get terribly ent…
Understanding theme | Reading | Khan Academy
Hello readers! Today I want to talk about themes. A theme is an important idea that is woven throughout a story. It’s not the plot or the summary, but something a little deeper. A theme links a big idea about our world with the action of a text. Sometimes…
How To Think Like A High Achiever
There are two types of people in this world: those who get it and those who don’t. And there’s really only one thing that differentiates between the two; it’s the unwavering belief in your ability to shape your own future. There are a lot of people out th…
The Pirate's Perspective | Lawless Oceans
Why did you want to go into piracy? But what made you want to conduct piracy locally? Is it a little way you or the other one for the oven can grow up? Yeah, I’m getting my devil on. Call myself the other one until the work was enough. The National Guard…
Anne Wojcicki : How to Build the Future
Today we are here with Anne Wojcicki, co-founder and CEO of 23andMe. Thank you very much. We always like to start with how you came up with the idea and the sort of the founding story of the company. So I was working on Wall Street. That doesn’t sound ve…
LearnStorm Growth Mindset: Khan Academy's humanities content creator on social belonging
Hey, I’m Kim Kutz Elliott and I work on humanities content at Khan Academy. So yeah, I thought about things that were really difficult for me. One thing, um, that was hard for me was class discussion because I went to this history class, and I swear that…