yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we want to do is find the derivative of this G of X. At first, it could look intimidating. We have a s of X here, we have a cosine of X, we have this crazy expression here, we have a pi over cube root of x. We're squaring the whole thing, and at first, it might seem intimidating. But as we'll see in this video, we can actually do this with the tools already in our toolkit. Using our existing derivative properties, using what we know about the power rule, which tells us that the derivative with respect to X of x to the N is equal to n * x to the n minus one, we've seen that multiple times.

We also need to use the fact that the derivative of cosine of X is equal to negative sine of X, and the other way around, the derivative with respect to X of sine of X is equal to positive cosine of X. So using just that, we can actually evaluate this or evaluate G Prime of X. So pause the video and see if you can do it.

So probably the most intimidating part of this, 'cause we know the derivative of sine of X and cosine of X is this expression here. We can just rewrite this or simplify it a little bit so it takes a form that you might be a little bit more familiar with. So actually, let me just do this on the side here.

So, Pi over the cube root of X squared, well that's the same thing. This is equal to pi times K^2 over the cube root of x^2. And this is just exponent properties that we're dealing with. So this is the same thing; we're going to take x to the 1/3 power and then raise that to the second power. So this is equal to pi times K^2 over x to the 2/3 power, which is the same thing as pi^2 over x to the 2/3 power.

So when you write it like this, it starts to get into a form you're like, "Oh, I could see how the power rule could apply there." So this thing is just pi^2 times x to the -2/3 power. So actually, let me delete this.

So this thing can be rewritten as pi^2 times x to the -2/3 power. So now let's take the derivative of each of these pieces of this expression. So we're going to take where we want to evaluate what G Prime of X is. So G Prime of X is going to be equal to, you could view it as the derivative with respect to X of seven sine of X.

So we could take, let's do the derivative operator on both sides here just to make it clear what we're doing. So we're going to apply it there, we're going to apply it there, and we're going to apply it there. So this derivative, this is the same thing as, this is going to be seven times the derivative of sine of X. So this is just going to be 7 times cosine of x.

This one over here, this is going to be three, or we're subtracting, so it's going to be this subtra- this minus. We can bring the constant out that we're multiplying the expression by. The derivative of cosine of x is negative sine of X.

And then finally here in the yellow, we just apply the power rule. So we have the -2/3. Actually, let's not forget this minus sign. I'm going to write it out here. And so you have the -2/3; you multiply the exponent times the coefficient. It might look confusing, pi squared, but that's just a number, so it's going to be negative, and then you have -23 times pi^2 times x to the -2/3 minus one power.

So what is this going to be? So we get G Prime of X is equal to, is equal to 7 cosine of x, and let's see, we have a -3 times a negative sine of X, so that's a positive 3 sine of X.

And then we have we're subtracting, but then this is going to be a negative, so that's going to be a positive. So we could say plus 2 pi^2 over 3, that's that part there, times x to the -2/3 minus 1. We could say -1 and 2/3, or we could say -5/3 power.

And there you have it! We were able to tackle this thing that looked a little bit hairy, but all we had to use was the power rule and what we knew to be the derivatives of sine and cosine.

More Articles

View All
Continental Drift 101 | National Geographic
Talk about the ultimate breakup. Europe and Africa have been splitting apart from the American continents for millions of years at a rate of approximately 2.5 cm per year. The continents are moving about as fast as our fingernails grow. As they continue t…
How to Get Started, Doing Things that Don't Scale, and Press (How to Start a Startup 2014: 8)
Thanks for having me, Sam! I’m Stanley, I’m the founder of DoorDash, and it’s really amazing to be here because it wasn’t naturally that long ago where I sat in your seats. I was class of 2014, graduated in CS, as well as my co-founder, Andy. For
Force Empty Your Trash
Hey guys, this mad kids are non. Today I’m going to show you how to force empty your trash through terminal efficiently. Now, some of you might have had the problem where you have so much stuff in your trash that might take hours to delete and empty your…
International Human Rights | 1450 - Present | World History | Khan Academy
We hold these truths to be self-evident, that all men are created equal, that they are endowed by their creator with certain unalienable rights, that among these are life, liberty, and the pursuit of happiness. This is an excerpt of the US Declaration of …
Atomic spectra | Physics | Khan Academy
We can look at stars or nebulas or even planets which are very, very far away and estimate what composes them, what are the elements that are there inside of them. But how do we do that? How can we sit here on Earth and figure out what elements are presen…
Questions about Sex That Women and Men Google the Most | Seth Stephens-Davidowitz
There are a couple of things that Google search has revealed about sex. One is the lack of sex. So, the number one complaint in a marriage is that it’s a sexless marriage. A much more common search than “loveless marriage” or “unhappy marriage.” The numbe…