yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Decomposing shapes to find area (add) | Math | 3rd grade | Khan Academy


2m read
·Nov 11, 2024

What is the area of the figure?

So down here we have this 10-sided figure, and we want to know its area. How many square meters does this figure cover? We have some measurements that seem helpful, but what's not too helpful to me is I don't know the special trick to find the area of a 10-sided figure.

So I've got to think about what I do know. What I do know is the way to find the area of a rectangle. What I can do is see if I can find any rectangles in here. Here's one rectangle right there. So I can find the area of that part.

Then let's see if I can find more. Here's another rectangle, so I can find the area of that part. We could call that one a rectangle or a square. And then that leaves us with this last part, which is again a rectangle.

So what we did is we broke this up or decomposed it into three rectangles. Now, if I find out how much space this purple one covers, the blue one, and the green one, if I combine those, that would tell me the area of the entire figure—how much space the entire figure covers.

So let's start with this one right here. This one is 3 m long, so we can kind of divide that by 3 m into three equal m. Then we got a width of 2 m down here, so let's put that in half.

If we draw those lines out, we can see this top row is going to cover 1 square m, 2 square m, 3 square m. And then there are two rows of that, so there's two rows of 3 square m, or a total of 6 square m. This rectangle covers 6 square m, so this part of the entire figure covers 6 square m.

The next one, our measurements are 3 and 3, so it will have three rows of 3 square m, or 9 square m. And then finally, this purple one has 3 m and 9 m, so we can say it will have three rows of 9, or 9 rows of 3 square m, which is 27 square m.

So the area of this purple section covers completely 27 square m. The green covers 9 square m, and the blue covered 6 square m. So if we combine all those areas, all those square meters it covers, that will tell us the area of the entire figure.

So we have 6 square m + 9 square m + 27 square m, and we can solve that. 6 + 9 is 15. 15 + 27, let's see, 5 plus 7 is 12. Just find some space up there: 110 and 2—10 or a 10 and a 20 is 30, and 30 + 12 is 42.

So the area of the entire figure is 42 square meters.

More Articles

View All
Giraffes on a Boat | Podcast | Overheard at National Geographic
It’s kind of a bit Jurassic Parkish, like you can hear her rustling through the bushes but you can’t see her. And that the brush was just so thick, and you know with inch-long acacia thorns or, you know, the other kind of hooked-shaped thorn, so it was a …
Fox News Cancelled Me
What’s up you guys? It’s Grahe here. So, I got cancelled by Fox News and because of that, I’m making this video as my way of sharing the information that they didn’t allow me to talk about. What could it be, you ask? Well, a few weeks ago, I received se…
Why Top Investors are Warning of a 'Lost Decade' for Stocks
A few weeks ago, Goldman Sachs put out this note saying that they believe the S&P 500 during the next 10 years will deliver a real return of just 1% annually. It’s a bit of a dire prediction. As you may have seen in the news over the past few weeks, i…
The Cosmic Calendar | Cosmos: Possible Worlds
This cosmic calendar compresses all of the last 13.8 billion years since the Big Bang into a single calendar. Either every month is a little more than a billion years, every day a little less than 40 million. A single hour is almost 2 million years. That …
Sine equation algebraic solution set | Trigonometry | Precalculus | Khan Academy
The goal of this video is to find the solution set for the following equation, so all of the x values. And we’re dealing with radians that will satisfy this equation. So I encourage you, like always, pause this video and see if you can work through this o…
Writing decimals and fractions from number lines
We’re told to express the point on the number line as both a fraction and a decimal, so pause this video and have a go at that. All right, now let’s do this together. We can see that the point in question is at a higher value than four and less than five…