yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The mathematics of history - Jean-Baptiste Michel


3m read
·Nov 9, 2024

[Music] [Applause]

So it turns out that mathematics is a very powerful language. It has generated considerable insight in physics, in biology, and in economics, but not that much in the humanities and in history. I think there's the belief that it is just impossible, that you cannot measure the doings of mankind, that you cannot measure history, but I don't think that's right. I want to show you a couple of examples why.

So my collaborator Aras and I were considering the following fact: that two kings, separated by centuries, will speak a very different language. That's a powerful historical force. So the king of England, Alfred the Great, will use a vocabulary and a grammar that is quite different from the king of Hip Hop, Jay-Z. Now, it's just the way it is—language changes over time, and it's a powerful force.

So Aras and I wanted to know more about that. We paid attention to a particular grammatical rule: past tense conjugation. So you just add "ed" to a verb at the end to signify the past. Today I walk; yesterday I walked. But some verbs are irregular—yesterday I thought.

Now, what's interesting about that is irregular verbs between Alfred and Jay-Z have become more regular. Like the verb "to wed" that you see here has become regular. So Aras and I followed the fate of over 100 irregular verbs through 12 centuries of the English language, and we saw that there's actually a very simple mathematical pattern that captures this complex historical change. Namely, if a verb is 100 times more frequent than another, it regularizes 10 times slower. That's a piece of history, but it comes in a mathematical wrapping.

Now, in some cases, math can even help explain or propose explanations for historical forces. So here, Steve Pinker and I were considering the magnitude of wars during the last two centuries. There's actually a well-known regularity to them: where the number of wars that are 100 times deadlier is 10 times smaller. So there are 30 wars that are about as deadly as the Six Days War, but there's only four wars that are 100 times deadlier, like World War I.

So what kind of historical mechanism can produce that? What's the origin of this? So Steve and I, through mathematical analysis, proposed that there's actually a very simple phenomenon at the root of this, which lies in our brains. This is a very well-known feature which we perceive quantities in relative ways. The quantities like the intensity of light or the loudness of a sound, for instance.

Committing 10,000 soldiers to the next battle sounds like a lot—it's relatively enormous if you've already committed 1,000 soldiers previously. But it doesn't sound so much; it's not relatively enough. It won't make a difference if you've already committed 100,000 soldiers previously. So you see that because of the way we perceive quantities, as the war drags on, the number of soldiers committed to it and the casualties will increase not linearly, like 10,000, 11,000, 12,000, but exponentially—10,000 later, 20,000 later, 40,000. And so that explains this pattern that we've seen before.

So here, mathematics is able to link a well-known feature of the individual mind with a long-term pattern—a historical pattern that unfolds over centuries and across continents. So these types of examples, today, they are just a few of them, but I think that in the next decade, they will become commonplace.

The reason for that is that the historical record is becoming digitized at a very fast pace. So there's about 130 million books that have been written since the dawn of time. Companies like Google have digitized many of them—about 20 million actually. And when the stuff of history is available in digital form, it makes it possible for mathematical analysis to very quickly and very conveniently reveal trends in our history and our culture.

So I think as in the next decade, the sciences and the humanities will come closer together to be able to address deep questions about mankind, and I think that mathematics will be a very powerful language to do that. It will be able to reveal new trends in our history, sometimes to explain them, and maybe even in the future to predict what's going to happen.

Thank you very much. [Music]

More Articles

View All
Why It Actually Might Be 'Survival of the Friendliest' | Nat Geo Explores
[Music] It’s a dog-eat-dog world: winner takes all, survival of the fittest. But is it really? If the biggest and baddest always win, how come there are so many more of them than them? Strength is helpful, but friendliness might actually be the key to evo…
Do Salt Lamps Work?
Part of this video was sponsored by LastPass. Stick around to the end for a word from our sponsor. Are negative ions good for you? Normally, I’d dismiss such a question out of hand. In fact, that’s exactly what I did when a friend brought it up about a m…
Make Luck Your Destiny
I think it’s pretty interesting that the first three kinds of luck that you described, there are very common clichés for them that everybody knows. And then for that last kind of luck, that comes to you out of the unique way that you act, there’s no real …
The Controversial Physics of Curling - COLD HARD SCIENCE - Smarter Every Day 111
Hey, it’s me Destin, welcome back to Smarter Every Day. So in the last episode, I explained that it’s not always the most athletic team that wins in sport; sometimes it involves the physical manipulation of objects, so sometimes it’s the most intelligent …
Principles for Dealing with the Changing World Order (5-minute Version) by Ray Dalio
I studied the 10 most powerful Empires over the last 500 years and the last three Reserve currencies. It took me through the rise and decline of the Dutch Empire and the Guilder, the British Empire and the Pound, the rise and early decline in the United S…
Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy
Let’s take, let’s do some examples where we’re finding the sums of finite geometric series, and let’s just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common r…