yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Verifying solutions to differential equations | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

  • [Instructor] So let's write down a differential equation: the derivative of y with respect to x is equal to four y over x.

And what we'll see in this video is the solution to a differential equation isn't a value or a set of values. It's a function or a set of functions.

But before we go about actually trying to solve this or figure out all of the solutions, let's test whether certain equations, certain functions, are solutions to this differential equation.

So for example, if I have y is equal to four x, is this a solution to this differential equation? Pause the video and see if you can figure it out.

Well, to see if this is a solution, what we have to do is figure out the derivative of y with respect to x and see if that truly equals four times y over x.

And I'm gonna try to express everything in terms of x to see if I really have an equality there.

So first let's figure out the derivative of y with respect to x. Well, that's just going to be equal to four. We've seen that many times before.

And so what we need to test is, is four, the derivative of y with respect to x, equal to four times, I could write y, but instead of y let's write four x.

I'm gonna put everything in terms of x. So y is equal to four x, so instead of four y I could write four times four x, all of that over x. Is this true?

Well that x cancels with that and I'm gonna get four is equal to 16, which it clearly is not.

And so this is not a solution. Not a solution to our differential equation.

Let's look at another equation. What about y is equal to x to the fourth power? Pause this video and see if this is a solution to our original differential equation.

Well, we're going to do the same thing. What's the derivative of y with respect to x? This is equal to, just using the power rule, four x to the third power.

And so what we have to test is, is four x to the third power, that's the derivative of y with respect to x, equal to four times y, instead of writing a y I'm gonna write it all in terms of x, so is that equal to four times x to the fourth, because x to the fourth is the same thing as y, divided by x?

And so let's see, x to the fourth divided by x, that is going to be x to the third.

And so you will indeed get four x to the third is equal to four x to the third. So check, this is a solution.

So is a solution. It's not necessarily the only solution, but it is a solution to that differential equation.

Let's look at another differential equation. Let's say that I had, and I'm gonna write it with different notation, f prime of x is equal to f of x minus x.

And the first function that I wanna test, let's say I have f of x is equal to two x. Is this a solution to this differential equation? Pause the video again and see if you can figure it out.

Well, to figure that out, you have to say well what is f prime of x? f prime of x is just going to be equal to two.

And then test the equality. Is two, is f prime of x, equal to f of x, which is two x, minus x, minus x?

And so let's see we are going to get two is equal to x.

So you might be tempted to say oh hey I just solved for x or something like that. But this would tell you that this is not a solution because this needs to be true for any x that is in the domain of this function.

And so this is, I'll just put an x there, or I'll put a incorrect there to say not, not a, not a solution.

Just to be clear again, this needs, in order for a function to be a solution of this differential equation, it needs to work for any x that you can put into the function.

Let's look at another one. Let's say that we have f of x is equal to x plus one. Pause the video and see, is this a solution to our differential equation?

Well, same drill. f prime of x is going to be equal to one.

And so we have to see is f prime of x, which is equal to one, is it equal to f of x, which is x plus one, x plus one, minus x?

And so here, you see no matter what x is, this equation is going to be true. So this is a solution, is a solution.

Let's do a few more of these. Let me scroll down a little bit so I have a little bit more, a little bit more space, but make sure we see our original differential equation.

Let's test whether, I'm gonna do it in a red color, let's test whether f of x equals e to the x plus x plus one is a solution to this differential equation.

Pause the video again and see if you can figure it out.

All right well let's figure out the derivative here. f prime of x is going to be equal to, derivative of e to the x with respect to x is e to the x, which I always find amazing.

And so, and then plus one and the derivative of this with respect to x is just zero.

And then let's substitute this into our original differential equation.

So f prime of x is e to the x plus one. Is that equal to f of x, which is e to the x plus x plus one, minus x, minus x?

And if that x cancels out with that x, it is indeed, they are indeed equal.

So this is also a solution. So this, this is a solution.

And we're done.

More Articles

View All
Raiding a Killer Bee Hive | Primal Survivor: Escape the Amazon
[Music] [Applause] What we’re going to be doing now is something that is really dangerous. The village has located an Africanized bee nest. Africanized bees are called killer bees, and the deal with killer bees is they were made by trying to develop a sup…
Why I Founded OceanX
When I was a kid, I used to watch Jacques Cousteau on television. I used to also watch Sea Hunt, which was about diving. Jacques Cousteau was an explorer, and a team of explorers that took us underwater because they brought the media underwater and then t…
To everyone wondering “When the Real Estate market will crash??” - my prediction
So basically you’re getting these people with big down payments who are making a lot of money, who can afford these houses, who are buying; this is hardly a bubble, and this is very sustainable long term because none of these people are ever gonna let the…
Selling Everything - The Next Crash Is Coming
What’s up, Graham? It’s guys here. So, you know the saying, “Buy Low, Sell High.” Well, apparently, while retail traders were celebrating the stock market’s best month since 2020, corporate insiders have been selling their stock at the fastest pace since …
The 7 BEST Purchases to make in your 20s
Hey guys, welcome back to the channel! In this video, we’re going to be talking about seven smart purchases that I think you should make when you’re still in your 20s. So I went down a bit of a YouTube rabbit hole and I saw a lot of people making differen…
HOW TO PICK A COLOGNE - Scentual Science - Smarter Every Day 125
Hey, it’s me Destin. Welcome back to Smarter Every Day. This is my buddy Ben, and he got a new toy, so we’re gonna try to shoot with this. Just because we want to try it. Show ‘em what it does. Do I have to stand right here? (Ben) Yes. OK, here we go. …