yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Maclaurin polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

We're told that ( f(x) ) is equal to one over the square root of ( x + 1 ), and what we want to figure out is what is the second degree Maclaurin polynomial of ( f ). And like always, pause this video and see if you could have a go at it.

So, let's remind ourselves what a Maclaurin polynomial is. A Maclaurin polynomial is just a Taylor polynomial centered at zero. So the form of this second degree Maclaurin polynomial, and we just have to find this Maclaurin expansion until our second degree term, it's going to look like this.

So ( P(x) ), I'm using ( P ) for a polynomial, it's going to be our ( f(0) ) plus we could view that as ( f(0) ) times ( x^{0} ) power; well, that's just ( f(0) ). ( f(0) ) plus ( f'(0) x ) plus ( \frac{f''(0)}{2} x^{2} ).

Now, if we wanted a higher degree, we could keep on going, but remember they're just asking us for the second degree. So this is the form that we're going to need. We're going to have these three terms. So let's see if we can evaluate these. Let's see if we can evaluate the function and its derivatives at 0.

So ( f(0) ) is equal to ( \frac{1}{\sqrt{0 + 1}} ). Well, that's ( \frac{1}{\sqrt{1}} ), the principal root of 1, which is positive 1, so that's just going to be equal to 1. So that right over there is equal to 1.

Now let's evaluate ( f' ) of ( x ) and then I'll evaluate ( f' ) of 0. ( f'(x) ) is equal to... well, ( \frac{1}{\sqrt{x + 1}} ). This is the same thing as ( (x + 1)^{-\frac{1}{2}} ).

So if I'm thinking of the first derivative of ( f ), well I could use the chain rule here. The derivative of ( x + 1 ) with respect to ( x ) well that's just going to be 1. Then I'll take the derivative of this whole thing with respect to ( x + 1 ) and I'll just use the power rule there.

So it's going to be ( -\frac{1}{2} ) times ( (x + 1)^{-\frac{3}{2}} ) and so the first derivative evaluated at zero is just ( -\frac{1}{2} ) times one, one to the negative three halves; one to the negative three half power well that's just going to be 1.

So this whole thing ( f'(0) ) is just ( -\frac{1}{2} ). So that is this right over here is ( -\frac{1}{2} ), and now let's figure out the second derivative.

Alright, I'll do this, let me do this in this green color. So the second derivative with respect to ( x ), well I do the same thing again. The derivative of ( x + 1 ) with respect to ( x ) is just one, so I just have to take the derivative of the whole thing with respect to ( x + 1 ).

So I take my exponent, bring it out front, ( -\frac{3}{2} ) times ( -\frac{1}{2} ) is going to be ( \frac{3}{4} ) times ( (x + 1) ), and then I decrement the exponent here by 1 or by two halves, so it's going to be ( -\frac{5}{2} ).

So the second derivative evaluated at zero, well if this is equal to zero, you're going to have one to the negative five halves, which is just one times ( \frac{3}{4} ) is going to be ( \frac{3}{4} ). So this part right over here is ( \frac{3}{4} ), and so you're going to have ( \frac{3}{4} \div 2 ). ( \frac{3}{4} \div 2 ) is ( \frac{3}{8} ).

So our Taylor or actually our Maclaurin polynomial, our second degree Maclaurin polynomial ( P(x) ) is going to be equal to, and I'll do it in the same colors, it's going to be equal to ( 1 - \frac{1}{2} x + \frac{3}{8} x^{2} ).

And we are done! There you have, we have our second degree Maclaurin polynomial of ( f ), which could be used to provide an approximation for our function, especially as we—as especially for ( x )'s near zero.

More Articles

View All
How To Spot A LIAR
Everybody lies; the only variable is about what. This is not just a quote taken from Dr. House; it’s a fact that all of us must accept, whether we like it or not. The average human hears between 10 to 200 lies a day, depending on the number of social inte…
Jamestown - the impact of tobacco
When we left off in the last video, things were not going particularly well for the English settlers at Jamestown. They had managed to survive a couple of years by the skin of their teeth, but by 1610, they had endured such incredible starvation that they…
What's Next After Bridgewater?
I was asked what am I going to do now that I’ve transitioned Bridgewater. Um, and how’s it, what’s the new activity for Ray Dalio, what’s he going to do? Um, first of all, what a journey it’s been! 47 years, it’s been fantastic, and I’m so excited to hav…
The Strange Tail of Spinosaurus | Podcast | Overheard at National Geographic
So, things to watch out for when we’re actually out in the field. And this is really serious. It kind of feels really surreal, and you think like, you know, this is like in a movie or something. But the problem is, in the movie, it’s stuntmen and fake sna…
Diana Hu on Augmented Reality and Building a Startup in a New Market
All right, Diana! Whoo! Welcome to the podcast. Thank you for having me here. Correct, so maybe we should start from now and then go backward in time. So, you’re working on AR at Niantic after your company, Escher Reality, has been acquired. How did you s…
The Truth: How To Buy Real Estate With No Money and No Credit
What’s up, you guys? It’s Graham here. So, I used to joke that when I first started making YouTube videos, the most common question I would get is, “Hey Graham, can you teach me how to buy real estate with no money down, no credit?” Oh, and by the way, I’…