yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Maclaurin polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

We're told that ( f(x) ) is equal to one over the square root of ( x + 1 ), and what we want to figure out is what is the second degree Maclaurin polynomial of ( f ). And like always, pause this video and see if you could have a go at it.

So, let's remind ourselves what a Maclaurin polynomial is. A Maclaurin polynomial is just a Taylor polynomial centered at zero. So the form of this second degree Maclaurin polynomial, and we just have to find this Maclaurin expansion until our second degree term, it's going to look like this.

So ( P(x) ), I'm using ( P ) for a polynomial, it's going to be our ( f(0) ) plus we could view that as ( f(0) ) times ( x^{0} ) power; well, that's just ( f(0) ). ( f(0) ) plus ( f'(0) x ) plus ( \frac{f''(0)}{2} x^{2} ).

Now, if we wanted a higher degree, we could keep on going, but remember they're just asking us for the second degree. So this is the form that we're going to need. We're going to have these three terms. So let's see if we can evaluate these. Let's see if we can evaluate the function and its derivatives at 0.

So ( f(0) ) is equal to ( \frac{1}{\sqrt{0 + 1}} ). Well, that's ( \frac{1}{\sqrt{1}} ), the principal root of 1, which is positive 1, so that's just going to be equal to 1. So that right over there is equal to 1.

Now let's evaluate ( f' ) of ( x ) and then I'll evaluate ( f' ) of 0. ( f'(x) ) is equal to... well, ( \frac{1}{\sqrt{x + 1}} ). This is the same thing as ( (x + 1)^{-\frac{1}{2}} ).

So if I'm thinking of the first derivative of ( f ), well I could use the chain rule here. The derivative of ( x + 1 ) with respect to ( x ) well that's just going to be 1. Then I'll take the derivative of this whole thing with respect to ( x + 1 ) and I'll just use the power rule there.

So it's going to be ( -\frac{1}{2} ) times ( (x + 1)^{-\frac{3}{2}} ) and so the first derivative evaluated at zero is just ( -\frac{1}{2} ) times one, one to the negative three halves; one to the negative three half power well that's just going to be 1.

So this whole thing ( f'(0) ) is just ( -\frac{1}{2} ). So that is this right over here is ( -\frac{1}{2} ), and now let's figure out the second derivative.

Alright, I'll do this, let me do this in this green color. So the second derivative with respect to ( x ), well I do the same thing again. The derivative of ( x + 1 ) with respect to ( x ) is just one, so I just have to take the derivative of the whole thing with respect to ( x + 1 ).

So I take my exponent, bring it out front, ( -\frac{3}{2} ) times ( -\frac{1}{2} ) is going to be ( \frac{3}{4} ) times ( (x + 1) ), and then I decrement the exponent here by 1 or by two halves, so it's going to be ( -\frac{5}{2} ).

So the second derivative evaluated at zero, well if this is equal to zero, you're going to have one to the negative five halves, which is just one times ( \frac{3}{4} ) is going to be ( \frac{3}{4} ). So this part right over here is ( \frac{3}{4} ), and so you're going to have ( \frac{3}{4} \div 2 ). ( \frac{3}{4} \div 2 ) is ( \frac{3}{8} ).

So our Taylor or actually our Maclaurin polynomial, our second degree Maclaurin polynomial ( P(x) ) is going to be equal to, and I'll do it in the same colors, it's going to be equal to ( 1 - \frac{1}{2} x + \frac{3}{8} x^{2} ).

And we are done! There you have, we have our second degree Maclaurin polynomial of ( f ), which could be used to provide an approximation for our function, especially as we—as especially for ( x )'s near zero.

More Articles

View All
15 Principles of Effective Leadership
Today, leadership is a force that can shape the destinies of organizations, communities and individuals. Effective leadership is not just a title or a position. It’s a profound and transformative art that gathers a set of guiding principles. These princip…
TI-84 geometpdf and geometcdf functions | Random variables | AP Statistics | Khan Academy
What we’re going to do in this video is learn how to use a graphing calculator, in particular, a TI-84. If you’re using any other TI Texas Instrument calculator, it’ll be very similar in order to answer some questions dealing with geometric random variabl…
The Truth Behind Every Success...
What’s up you guys? It’s Graham here. So I want to talk about what you don’t really see behind the scenes of every success story you see, myself included. What a lot of you guys see is someone successful. You see someone who has, you know, the cars, you s…
Approximating limit from numeric table
This video we’re going to try to get a sense of what the limit as ( x ) approaches 3 of ( \frac{x^3 - 3x^2}{5x - 15} ) is. When I say get a sense, we’re going to do that by seeing what values for this expression we get as ( x ) gets closer and closer to t…
Understanding and building phylogenetic trees | High school biology | Khan Academy
When we look at all of the living diversity around us, the natural question is, “Well, how related are the different species to each other?” If you put that into an evolutionary context, relatedness should be tied to how recently two species shared a comm…
Sketching exponentials
Now I want to show you a really useful manual skill that you can use when you have voltages that look like exponentials. We’re going to talk about this exponential curve here that’s generated as part of the natural response of this RC circuit. We worked …