yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Maclaurin polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

We're told that ( f(x) ) is equal to one over the square root of ( x + 1 ), and what we want to figure out is what is the second degree Maclaurin polynomial of ( f ). And like always, pause this video and see if you could have a go at it.

So, let's remind ourselves what a Maclaurin polynomial is. A Maclaurin polynomial is just a Taylor polynomial centered at zero. So the form of this second degree Maclaurin polynomial, and we just have to find this Maclaurin expansion until our second degree term, it's going to look like this.

So ( P(x) ), I'm using ( P ) for a polynomial, it's going to be our ( f(0) ) plus we could view that as ( f(0) ) times ( x^{0} ) power; well, that's just ( f(0) ). ( f(0) ) plus ( f'(0) x ) plus ( \frac{f''(0)}{2} x^{2} ).

Now, if we wanted a higher degree, we could keep on going, but remember they're just asking us for the second degree. So this is the form that we're going to need. We're going to have these three terms. So let's see if we can evaluate these. Let's see if we can evaluate the function and its derivatives at 0.

So ( f(0) ) is equal to ( \frac{1}{\sqrt{0 + 1}} ). Well, that's ( \frac{1}{\sqrt{1}} ), the principal root of 1, which is positive 1, so that's just going to be equal to 1. So that right over there is equal to 1.

Now let's evaluate ( f' ) of ( x ) and then I'll evaluate ( f' ) of 0. ( f'(x) ) is equal to... well, ( \frac{1}{\sqrt{x + 1}} ). This is the same thing as ( (x + 1)^{-\frac{1}{2}} ).

So if I'm thinking of the first derivative of ( f ), well I could use the chain rule here. The derivative of ( x + 1 ) with respect to ( x ) well that's just going to be 1. Then I'll take the derivative of this whole thing with respect to ( x + 1 ) and I'll just use the power rule there.

So it's going to be ( -\frac{1}{2} ) times ( (x + 1)^{-\frac{3}{2}} ) and so the first derivative evaluated at zero is just ( -\frac{1}{2} ) times one, one to the negative three halves; one to the negative three half power well that's just going to be 1.

So this whole thing ( f'(0) ) is just ( -\frac{1}{2} ). So that is this right over here is ( -\frac{1}{2} ), and now let's figure out the second derivative.

Alright, I'll do this, let me do this in this green color. So the second derivative with respect to ( x ), well I do the same thing again. The derivative of ( x + 1 ) with respect to ( x ) is just one, so I just have to take the derivative of the whole thing with respect to ( x + 1 ).

So I take my exponent, bring it out front, ( -\frac{3}{2} ) times ( -\frac{1}{2} ) is going to be ( \frac{3}{4} ) times ( (x + 1) ), and then I decrement the exponent here by 1 or by two halves, so it's going to be ( -\frac{5}{2} ).

So the second derivative evaluated at zero, well if this is equal to zero, you're going to have one to the negative five halves, which is just one times ( \frac{3}{4} ) is going to be ( \frac{3}{4} ). So this part right over here is ( \frac{3}{4} ), and so you're going to have ( \frac{3}{4} \div 2 ). ( \frac{3}{4} \div 2 ) is ( \frac{3}{8} ).

So our Taylor or actually our Maclaurin polynomial, our second degree Maclaurin polynomial ( P(x) ) is going to be equal to, and I'll do it in the same colors, it's going to be equal to ( 1 - \frac{1}{2} x + \frac{3}{8} x^{2} ).

And we are done! There you have, we have our second degree Maclaurin polynomial of ( f ), which could be used to provide an approximation for our function, especially as we—as especially for ( x )'s near zero.

More Articles

View All
Proving the ASA and AAS triangle congruence criteria using transformations | Geometry | Khan Academy
What we’re going to do in this video is show that if we have two different triangles that have one pair of sides that have the same length, so these blue sides in each of these triangles have the same length. They have two pairs of angles where, for each …
String Theory Explained – What is The True Nature of Reality?
What is the true nature of the universe? To answer this question, humans come up with stories to describe the world. We test our stories and learn what to keep and what to throw away. But the more we learn, the more complicated and weird our stories becom…
YC Tech Talks: Designing from Day One: Artists as Founders with Multiverse (S20)
Um, so we’re multiverse. We did YC W20, so that was from like January to March of this year, just before corona hit. You know, multiverse, we’re making next generation tabletop RPGs. You can think of us like a mix between, you know, DnD and Roblox. We wa…
Rescue Scenarios with Better Technology | Breakthrough
Hi, I’m Tim Maloney, Vice President of Operations here at Guardian Centers. Guardian Centers was built in response to historical events. Hurricane Katrina and Sandy would be on the forefront of the decision-making process. We have set up national exercis…
Visit the Okavango Delta in 360° | National Geographic
Believe it or not, you’re in the middle of the Kalahari Desert in a place that is home to some of the most diverse wildlife on the planet. Here, you can move among them. They watch you. They listen to you. And they can smell you. Welcome to the Okavango …
15 Ways To Grow Your Personality
Personality is more than just looks or manner of speech; it’s how you think, feel, and act that makes you unique. You have to do more than just read a few self-help books to develop a great character, but it is a great start. Personality lights you up in …