yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Showing segment congruence equivalent to having same length


2m read
·Nov 10, 2024

In this video, we're going to talk a little bit about segment congruence and what we have here. Let's call this statement one. This is the definition of line segment congruence, or at least the one that we will use. Two segments are congruent; that means that we can map one segment onto the other using rigid transformations. Examples of rigid transformations are reflections, rotations, translations, and combinations of them.

Now, what we're going to see in this video is that statement 1 is actually equivalent to statement 2. Or another way of saying it is, if statement 1 is true, then statement 2 is true. And if statement 2 is true, then statement 1 is true. Or we can write it like this: we can map one segment onto another using rigid transformations if and only if the two segments have the same length.

So how do we go about proving it? Well, the first thing that we'd want to prove is that if statement 1 is true, then statement 2 is true. So how would we go about doing this? And like always, I encourage you to pause the video and have a go at it.

All right, now let's work through this together. Some proofs like this might be difficult because they feel so intuitive, but one way to prove this is to first say that by definition, rigid transformations preserve length. So by definition, rigid transformations— that's what makes them rigid— rigid transformations preserve length.

So if one segment can be mapped onto a second segment with rigid transformations, they must have had the same original length. They must have had the same original length. Or another way to say it is, then statement 2 is true.

Then we can try to do it the other way around. So let's see if we can prove that if statement 2 is true, then statement 1 is true. Why don't you pause this video and have a go at that as well?

So let's assume I have segment AB, and then I have another segment, let's call it CD, that have the same length. They meet statement two, the number two statement right over there. To map AB onto CD, all I have to do is this in two rotations.

First, I will translate so that A is on top of C. So I will translate segment AB so that point A is on top of point C. And then the next thing I would do is rotate segment AB so that point B is on top of point D.

And there you have it! For any two segments with the same length, I can always translate it so that I have one set of points overlap. Then to get the other points to overlap, I just have to rotate it.

I know that's going to work because they have the same length. So I've just shown you that if we can map one segment onto another using rigid transformations, then we know they have the same length. And if two segments have the same length, then we know that we can map one segment onto the other using rigid transformations.

More Articles

View All
Steve Jobs' 2005 Stanford Commencement Address (with intro by President John Hennessy)
[Music] This program is brought to you by Stanford University. Please visit us at stanford.edu. It now gives me great pleasure to introduce this year’s commencement speaker, Steve Jobs. [Applause] The chief executive officer and co-founder of Apple and …
Tim Matheson on Playing Ronald Reagan | Killing Reagan
Very rarely is there the perfect man and the perfect job, and we see it in actors and we see it in certain politicians. Here was a man who was born to play that role as President of the United States and was an inspirational leader when the nation really …
Negative powers differentiation | Derivative rules | AP Calculus AB | Khan Academy
[Voiceover] So we have the function g of x, which is equal to 2/x to the third minus 1/x squared. And what I wanna do in this video, is I wanna find what g prime of x is and then I also wanna evaluate that at x equal two. So I wanna figure that out. And…
Differentiability and continuity | Derivatives introduction | AP Calculus AB | Khan Academy
What we’re going to do in this video is explore the notion of differentiability at a point. That is just a fancy way of saying, does the function have a defined derivative at a point? So let’s just remind ourselves of a definition of a derivative. There …
Angles in circles word problem | Math | 4th grade | Khan Academy
If Ariana turns the stove dial 135 degrees to the right, what setting will the dial be on? So, two very important things up here: first, she’s turning the dial 135 degrees, and which way is she turning the dial? She’s turning the dial to the right. So he…
250,000 DOMINOES! - The American Domino Record - Smarter Every Day 178
DESTIN>> That’s right! You stand on the right. Hey, it’s me, Destin. Welcome back to Smarter Every Day. I’m teaching my kids that you’re supposed to stand on the right. Stand on the right. He’s standing… she’s there… you go. All right, we’re in Detr…