yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to factoring higher degree monomials | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

In this video, we're going to dig a little bit deeper into our knowledge or our understanding of factoring. Now, factoring is something that we've been doing for many years now. You can go all the way back to when you're thinking about how would I factor the number 12. Well, I could write the number 12 as 3 times 4. I could also write it as 2 times 6. These are all legitimate factors. Or I could try to do a prime factorization of 12, where I'm trying to write it as the product of—you could view it as its most basic constituents—which would be the prime numbers.

So we've done stuff like, well, 12 can be expressed as 2 times 6. 2 is prime, but then 6 can be expressed as 2 times 3. And so 12 could be expressed as 2 times 2 times 3, which we see right over here. This is all review, and this would be a prime factorization. We saw an analog when we first learned it in Algebra One.

In Algebra One, we learn things like—and sometimes this might be in a Math 1 class or even in a pre-algebra class—you'll learn things like, hey, how do I factor x squared plus 6x? And you might recognize that, hey, x squared could be rewritten as x times x, and 6x, that really just means 6 times x. And so both of them have x as a factor. And so we might want to factor that out, and so we could rewrite this entire expression as x times (x + 6).

What we just did is we factored out these x's that I am circling in blue. So in general, this idea of factoring, if you're thinking about numbers, you're writing one number as the product of other numbers. If you're thinking about expressions, you're writing an expression as the product of other expressions.

Well, now as we go a little bit more advanced into algebra, we're going to start thinking about doing this with higher-order expressions. So we've done it with just an x or just an x squared, but now we're going to start thinking about what happens if we have something to the third power, fourth power, sixth power, tenth power, hundredth power. But it's really the same ideas.

We could start with monomials, which is a fancy word for just a single term. So let's say I had something like 6x to the seventh. What are the different ways that I could factor this? Pause this video and think about it. Can I express this as the product of two other things?

Well, I could rewrite this as being equal to 2x to the third times what? Well, let's see what I have to multiply 2 by to get to 6. I have to multiply it by 3. And what do I have to multiply x to the third by to get to x to the seventh? I could multiply it by 3x to the fourth. Notice 2 times 3 is 6, x to the third times x to the fourth is x to the seventh. We add exponents when we're multiplying, when we're multiplying things with the same base.

But this isn't the only way to factor, just as we saw that 3 times 4 wasn't the only way to factor 12. You could also express this as maybe being equal to x to the sixth times what? Well, we would still have to multiply by 6 then, and then we'd have to multiply by another x. So we could write this as x to the sixth times 6x.

There's oftentimes multiple ways to factor a higher degree monomial like this. There is also an analog to doing something like a prime factorization when you're trying to really decompose or rewrite this expression as a product of its simplest parts. How would you do that for 6x to the seventh?

Well, you could rewrite that— you could say six x to the seventh. Well, that's equal to—we could think about the six first. We know that the prime factorization of six is 2 times 3. Two times three, and then x to the seventh is just seven x's multiplied by each other—so times x, times x, times x, times x, times x. How many is that? That's five, six, and seven.

And so some of what we were doing when I said 2x to the third, what we really thought about is, okay, I had a 2, and then I had x times x times x. And then what do I have to multiply that? Well, I have to multiply that by 3x to the fourth.

As we will see, being able to think about monomials in this way will be useful for factoring higher degree things that aren't monomials—things that are binomials, trinomials, or polynomials in general. And we'll do that in future videos.

More Articles

View All
Worked example: Calculating the maximum wavelength capable of ionization | Khan Academy
We’re told that the first ionization energy of silver is 7.31 times 10 to the fifth joules per mole. What is the longest wavelength of light that is capable of ionizing an atom of silver in the gas phase? All right. Now, before I even ask you to pause an…
How To Design Your Dream Life (In Just 30 Days)
What if you could achieve your dream life by following a simple step-by-step system, checking off the boxes to organize strategic and fulfilling tasks designed to guide you on a path to make you realize your higher self? Yeah, right! If it was only that e…
Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy
An object is moving along a line. The following graph gives the object’s velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out. All right, now let’s do…
Introduction to polynomial division
Earlier in your algebraic careers, you learned how to multiply polynomials. So, for example, if we had (x + 2) times (4x + 5), we learned that this is the same thing as really doing the distributive property twice. You could multiply (x) times (4x) to ge…
You NEED to Take Time to Reflect On Your Decisions
So I’m curious, what do you see as the importance of principles as we navigate our lives personally, professionally, financially, and collectively into the future? Uh, what I discovered at an early age, and I really would recommend everybody do this, is …
Warren Buffett, Chairman, Berkshire Hathaway Investment Group | Terry Leadership Speaker Series
Good morning. It certainly got quiet quickly. That surprised me. Can you hear me? Are you there? Back well for business school, you know, it doesn’t get much better than this. Having the world’s greatest investor come to our campus is quite a bore. Office…