yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Is the universe a hologram? The strange physics of black holes | Michelle Thaller | Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

Black holes really are kind of getting to the very heart of our physics. And I believe that they're kind of showing us the way that eventually we're going to need different physics and new physics.

People ask questions like, "What happens inside a black hole?" Or even, "What happens at the very boundary of a black hole, the event horizon, when light is absorbed?" And honestly, our physics is telling us a lot of contradictory things. And our image of what an event horizon really is may be changing.

People like Stephen Hawking and Leonard Susskind have recently come up with this idea that a black hole should not be able to destroy information. O.K., what do we mean by information? Information can be almost anything. All of the different atoms in my body have angular momentum, they have charge, they have mass. There's all sorts of little bits of information that make me me.

At the quantum mechanic level, the tiniest of levels, there are different amounts of energy, there are different probabilities that are contained in the structure of my matter. And information, in some ways, is a form of energy. It's actually a way that you can describe something which is somehow, in a strange way, a higher energy state than not being able to describe something.

And so one of the questions is, "If energy really can't be destroyed, energy itself is something that is intrinsic in the universe, you can't really create or destroy it, is it possible that information is the same way? Is there really no way to actually destroy the information about what all of my subatomic particles are doing right now?"

So black holes kind of stare you right in the face. What a black hole supposedly does is it absorbs everything. Space and time bend into a black hole so that nothing can escape. That means that any information about the material that fell in is gone. The only thing we know about it is that as a black hole absorbs material, it gets more massive.

It actually adds that mass to the mass of the black hole. And as that mass increases, the event horizon becomes larger. Basically, the area where space is so curved that you can't get out begins to extend the more massive a black hole is. The most massive black holes we know of in the universe are many billions of times the mass of our sun.

And the physical extent of this event horizon is about the size of our solar system, maybe like out to the planet Pluto. So is it possible, then, if everything goes into a black hole and nothing ever comes out, space and time go inside the black hole and don't come out? What happened to that information?

And this has begun to make a lot of people wonder if we really have thought of black holes the wrong way. Maybe there isn't an event horizon in the true sense. I actually had a friend of mine that studies black holes say, "Well, I'm not sure if they're black. They may be very, very dark navy blue."

And what he meant by that is, maybe there are some tricks to actually get information out of a black hole. Maybe there really is some form of energy that can leak away from the black hole over time. Now, Stephen Hawking wondered if quantum effects very near the event horizon could actually separate something called virtual particles, the energy of space itself.

If you're familiar with Einstein's equation, E equals MC squared, energy equals mass times the speed of light squared. Energy and mass are the same thing. They're equivalent. You can actually make mass into energy, and you can make energy into mass.

Around a black hole, where there's very hot gas, very high temperatures, very strong magnetic fields, perhaps, there's a lot of energy. And that energy can actually manifest itself as particles, mass. And the energy always creates particle/antiparticle pairs. They're called virtual particles.

And matter and antimatter, the thing you know about it is that it annihilates immediately. So these tiny little particles come into existence, then annihilate, and you're back to energy. And this happens all around us all the time.

So, if this happens near a black hole, it's possible o...

More Articles

View All
Justification with the mean value theorem: table | AP Calculus AB | Khan Academy
The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification. Well, to use the mean…
Are GMOs Good or Bad? Genetic Engineering & Our Food
GMOs are one of the most controversial areas of science. Genetic engineering is used in many fields, but even though medical applications like GM insulin are widely accepted, the debate heats up when it comes to food and agriculture. Why is that? Why is t…
Choosing The Right Crypto Investment For My Portfolio | Anthony Pompliano
[Music] I see you go on CNBC a few times and, uh, getting some, uh, verbal tussles. You know, back in the day you and I used to have some verbal tussles, which I just want to remind people of. But, uh, recently you’ve been asked about the vaccine mandates…
Homeroom with Sal & Neel Kashkari - Tuesday, February 2
Hi everyone, Sal Khan here from Khan Academy. Welcome to the homeroom live stream! We’ve had a little bit of a hiatus, so it’s good to see all of y’all again. We have a really exciting guest today, Neil Kashkari, who is the president of the Federal Reserv…
Why I Stopped Listening To Finance Gurus
Basically, all my money that’s in stocks and shares is invested in IND. What’s going on when it comes to Index Fund? You want to get rich from investing? F*** investing! Despite the popular financial advice of saving as much as you can and investing the …
Subtracting vectors with parallelogram rule | Vectors | Precalculus | Khan Academy
In this video, we’re going to think about what it means to subtract vectors, especially in the context of what we talked about as the parallelogram rule. So, let’s say we want to start with vector A, and from that, we want to subtract vector B. We have v…