yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying graph for exponential


3m read
·Nov 11, 2024

All right, we are asked to choose the graph of the function, and the function is f of x equal to 2 * 3^x. We have three choices here, so pause this video and see if you can determine which of these three graphs actually is the graph of f of x.

All right, now let's work through this together. Whenever I have a function like this, which is an exponential function because I'm taking some number and I'm multiplying it by some other number to some power, that tells me that I'm dealing with an exponential. I like to think about two things: what happens when x equals 0? What is the value of our function?

Well, when you just look at this function, this would be 2 * 3^0, which is equal to 3^0, which is 1. It's equal to 2. So one way to think about it in the graph of y is equal to f of x; when x is equal to 0, y is equal to 2. Another way to think about it is this value in an exponential function is sometimes called the initial value. If we were thinking of the x-axis instead of the x-axis, we would be thinking about the time axis or the t-axis. That's why it's sometimes called the initial value.

But the y-intercept is going to be described by that when you have a function of this form. You saw it right over there: f of 0, 3^0 is 1; you're just left with the 2. So which of these have a y-intercept of 2? Well, here the y-intercept looks like 1, here the y-intercept looks like 3, and here the y-intercept is 2.

So just through elimination through that alone, we can feel pretty good that this third graph is probably the choice. But let's keep analyzing it to feel even better about it and so that we have the skills for really any exponential function that we might run into.

Well, the other thing to realize is this number 3 is often referred to as a common ratio, and that's because every time you increase x by one, you're going to be taking 3 to a one higher power, or you're essentially going to be multiplying by 3 again. So, for example, f of 1 is going to be equal to 2 * 3^1, which is equal to 2 * 3, or 6.

So from f of 0 to f of 1, you essentially have to multiply by 3, and you keep multiplying by 3. f of 2: f of 2, you're going to multiply by 3 again. It's going to be 2 * 3^2, which is equal to 18. So once again, when I increase my x by one, I'm multiplying the value of my function by 3.

Let's just see which of these do this. This one, we said it has the wrong y-intercept. But as we go from x equal to 0 to x equal to 1, we are going from 1 to 3, and then we are going from 3 till it looks like we're close, pretty close to 9. So it does look like this does have a common ratio of 3; it just has a different y-intercept than the function we care about.

This looks like the graph f of x is equal to just 1 * 3^x. Here we're starting at 3, and then when x equals 1, it looks like we are doubling every time x increases by one. So this looks like the graph of y is equal to, I have my what we could call our initial value or our y-intercept, 3, and if we're doubling every time we increase by 1, 3 * 2^x that's this graph here.

As I said, this first graph looks like y is equal to 1 * 3^x; we are tripling every time, 1 * 3^x, or we could just say y is equal to 3^x. Now this one here better work because we already picked it as our solution, so let's see if that's actually the case.

So as we increase by one, we should multiply by 3. So 2 * 3 is indeed 6, and then when you increase by another one, we should go to 18; that's kind of off the charts here, but it does seem reasonable to see that we are multiplying by 3 every time.

You could also go the other way; if you're going down by one, you should be dividing by 3. So 2 divided by 3, this does look pretty close to 2/3. So we should feel very good about our third choice.

More Articles

View All
How To Make Time Work For You
You overestimate what you can do in a day and underestimate what you can do in a year. That’s the main reason why you never have enough time. But there is a way to take control of your time and make it work for you. Let us explain. Welcome to a lux. When…
How To Make Money: Real Estate vs Amazon FBA vs Affiliate Marketing vs Social Media Marketing
What’s up you guys, it’s Graham here and in this video—no, no, no, no, he’s got to be—“what’s up you guys, it’s Graham here”—oh well, thank you guys, it’s Graham here. And today we have a very unique video here, compliments by the way of the Montage Hotel…
Psychometric Testing
One of the most important things that you can do for yourself individually, and also in building a team, is to honestly know yourself. Know your preferences, know your strengths and weaknesses, and then see how you can fit together. If you’re building a …
Why Beautiful Things Make us Happy – Beauty Explained
A lot of things can be beautiful. Landscapes, faces, fine art, or epic architecture; stars in the sky. Or simply the reflection of the sun on an empty bottle. Beauty is nothing tangible; it only exists in our heads as a pleasant feeling. If we have to def…
Galvanic (voltaic) cells | Applications of thermodynamics | AP Chemistry | Khan Academy
Galvanic cells, which are also called voltaic cells, use a thermodynamically favorable reaction to generate an electric current. Before we look at a diagram of a galvanic or voltaic cell, let’s first look at the half reactions that are going to be used in…
The Space Race | Meet Ed Dwight | National Geographic Documentary Films
My hope was just getting into space in any kind of way, but they were not gonna let that happen. And they said, number one, I wasn’t tall enough. I was Catholic. I wasn’t Black enough. I was not the model of the Negro race. I was a one-man operation when …