yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying graph for exponential


3m read
·Nov 11, 2024

All right, we are asked to choose the graph of the function, and the function is f of x equal to 2 * 3^x. We have three choices here, so pause this video and see if you can determine which of these three graphs actually is the graph of f of x.

All right, now let's work through this together. Whenever I have a function like this, which is an exponential function because I'm taking some number and I'm multiplying it by some other number to some power, that tells me that I'm dealing with an exponential. I like to think about two things: what happens when x equals 0? What is the value of our function?

Well, when you just look at this function, this would be 2 * 3^0, which is equal to 3^0, which is 1. It's equal to 2. So one way to think about it in the graph of y is equal to f of x; when x is equal to 0, y is equal to 2. Another way to think about it is this value in an exponential function is sometimes called the initial value. If we were thinking of the x-axis instead of the x-axis, we would be thinking about the time axis or the t-axis. That's why it's sometimes called the initial value.

But the y-intercept is going to be described by that when you have a function of this form. You saw it right over there: f of 0, 3^0 is 1; you're just left with the 2. So which of these have a y-intercept of 2? Well, here the y-intercept looks like 1, here the y-intercept looks like 3, and here the y-intercept is 2.

So just through elimination through that alone, we can feel pretty good that this third graph is probably the choice. But let's keep analyzing it to feel even better about it and so that we have the skills for really any exponential function that we might run into.

Well, the other thing to realize is this number 3 is often referred to as a common ratio, and that's because every time you increase x by one, you're going to be taking 3 to a one higher power, or you're essentially going to be multiplying by 3 again. So, for example, f of 1 is going to be equal to 2 * 3^1, which is equal to 2 * 3, or 6.

So from f of 0 to f of 1, you essentially have to multiply by 3, and you keep multiplying by 3. f of 2: f of 2, you're going to multiply by 3 again. It's going to be 2 * 3^2, which is equal to 18. So once again, when I increase my x by one, I'm multiplying the value of my function by 3.

Let's just see which of these do this. This one, we said it has the wrong y-intercept. But as we go from x equal to 0 to x equal to 1, we are going from 1 to 3, and then we are going from 3 till it looks like we're close, pretty close to 9. So it does look like this does have a common ratio of 3; it just has a different y-intercept than the function we care about.

This looks like the graph f of x is equal to just 1 * 3^x. Here we're starting at 3, and then when x equals 1, it looks like we are doubling every time x increases by one. So this looks like the graph of y is equal to, I have my what we could call our initial value or our y-intercept, 3, and if we're doubling every time we increase by 1, 3 * 2^x that's this graph here.

As I said, this first graph looks like y is equal to 1 * 3^x; we are tripling every time, 1 * 3^x, or we could just say y is equal to 3^x. Now this one here better work because we already picked it as our solution, so let's see if that's actually the case.

So as we increase by one, we should multiply by 3. So 2 * 3 is indeed 6, and then when you increase by another one, we should go to 18; that's kind of off the charts here, but it does seem reasonable to see that we are multiplying by 3 every time.

You could also go the other way; if you're going down by one, you should be dividing by 3. So 2 divided by 3, this does look pretty close to 2/3. So we should feel very good about our third choice.

More Articles

View All
Finding derivative with fundamental theorem of calculus | AP®︎ Calculus AB | Khan Academy
Let’s say that we have the function g of x, and it is equal to the definite integral from 19 to x of the cube root of t dt. What I’m curious about finding, or trying to figure out, is what is g prime of 27? What is that equal to? Pause this video and try …
LearnStorm Growth Mindset: Salon owner on her career journey
My name is Sam Devine. I’m 27 years old and I am a salon owner. My story of becoming a hairstylist was pretty interesting. I had been cutting hair all throughout high school and all of my friends were playing and just having a good time. I never actually …
Safari Live - Day 110 | National Geographic
Generally, with me today is Ferg, and we are fighting and braving the African weather just to be able to go and find some animals. Now, if you’ve got any comments or any questions, please send them through using the hashtags #bylab or use the YouTube chat…
Shifts in demand for labor | Microeconomics | Khan Academy
We are now going to continue our study of labor markets, and in this video we’re going to focus on the demand curve for labor. So, let’s imagine that we’re talking about a market for people who work in the pant-making industry. So each of these firms righ…
How Damaging is Radiation?
What is radiation? Isn’t a bad type of poisoning. It’s just like a dirty word to me. It’s just something which is not good, not good for me, being a human being exposed to great amounts of it—waves of bad stuff. Yeah, I mean, it’s dangerous. We all know …
Variance of a binomial variable | Random variables | AP Statistics | Khan Academy
What we’re going to do in this video is continue our journey trying to understand what the expected value and what the variance of a binomial variable is going to be, or what the expected value or the variance of a binomial distribution is going to be, wh…