yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why is everyone fighting over these tiny spots of space? - Fabio Pacucci


3m read
·Nov 8, 2024

Since the launch of the first artificial satellite in 1957, governments, companies, and research institutions have been planting flags among the stars. But while it might seem like there's plenty of room in this vast expanse, some pieces of celestial real estate are more valuable than others. Each of these dots is a Lagrange point, and as far as human space exploration is concerned, they may be the most important places in our solar system.

Named after the 18th century mathematician who deduced their positions, Lagrange points are rare places of equilibrium in our constantly shifting universe. All celestial bodies exert a gravitational force on nearby objects, pulling them in and out of orbits. And gravity acts alongside several apparent forces to determine what those orbits look like. However, Lagrange points are places where all these forces balance out.

So if we place a relatively low mass object here, it will maintain a constant distance from the massive bodies pulling on it. Essentially, Lagrange points are celestial parking spaces—once an object is there, it requires little to no energy to stay put. So whenever humans want to keep an object in one place for a long time without using tons of fuel, it needs to be orbiting a Lagrange point.

However, there are only so many of these parking spots. Pairs of massive bodies in our solar system generate sets of five Lagrange points. This means our Sun has five points with every planet, and our planets have five points with each of their moons. Adding these up, there are over 1,000 Lagrange points in our solar system—but only a few are useful for human purposes. Many are in locations that are too difficult to reach or simply not very useful. And for reasons we'll explain in a bit, many others are unstable.

Currently, only two of these points are heavily used by humans. But we’ll likely use many more in the future—making these limited points exclusive real estate. Which begs the question: what exactly should we park in them? That answer depends on where each point is. Consider the five Lagrange points generated by the Sun and the Earth.

L1 is located inside Earth's orbit, about 1.5 million kilometers away from the planet. With this panoramic view of the Sun, unobstructed by Earth’s shadow, L1 is the perfect place for solar-observing satellites. L2 is at the same distance from Earth but outside its orbit and shielded from the Sun, making it the perfect spot to observe outer space. In 2022, the James Webb Space Telescope went online here, in a spot where the Sun and Earth only occupy a tiny fraction of the sky.

L3 is in a particularly mysterious location that can never be directly observed from Earth’s surface. This has made L3 a frequent locale in science fiction, though it hasn’t offered much use to scientists yet. L4 and L5, however, are a bit different from their siblings. In every set of five, the first three Lagrange points are slightly unstable. This means objects will slowly drift away from them, though keeping what we’ve parked there in place is still energetically cheap.

The stability of L4 and L5, however, varies from set to set. If the heavier of the two bodies generating the points has less than 25 times the mass of the lighter body, these points are too unstable to park things in. However, if the heavier body is massive enough—like it is in the Sun-Earth set—then the relevant forces will always return objects to these equilibrium points, making them our most stable parking spots. That’s why points like these naturally accumulate space objects, such as the Sun-Jupiter set’s L4 and L5, which host thousands of asteroids.

Every Lagrange point in our solar system has its quirks. Some might be perfect for scavenging construction materials from drifting asteroids. Others might make ideal gas stations for ships headed to deep space, or even host entire human colonies. These points are already home to advanced technological achievements, but soon, they could become our stepping stones to the stars.

More Articles

View All
Tracking Plastic Sea to Source | Explorers Fest
The session all of you are able to stand up here and give a talk about why we need three by three. Yeah, and to get that we need to. The emotional component was beautifully put forward by a hundred ways. Now let’s talk about the brain for a little bit—the…
Contextualization--Islam | World History | Khan Academy
Here is a passage from the Scottish philosopher and writer, even a little bit of mathematics historian Thomas Carlyle. He wrote this in “On Heroes, Hero Worship, and the Heroic in History,” and this is in reference to his view on Muhammad and the spread o…
Developing an American colonial identity | Period 2: 1607-1754 | AP US History | Khan Academy
[Instructor] The first long-term English colony in North America was established at Jamestown in 1607. No one expected that it would last very long. It was intended to be a get-rich-quick scheme for its investors, who hoped they would find gold in the swa…
More on Normal force (shoe on floor) | Physics | Khan Academy
Check out this fine looking sneaker right here. We’re going to use this shoe to illustrate some more challenging normal force problems, and we’re going to take this as an opportunity to discuss a lot of the misconceptions that people have about the normal…
LearnStorm Growth Mindset: Khan Academy's test prep content creator on mistakes
Hi, I’m Dave Travis. I’m the test prep content manager at Khan Academy. It’s especially challenging when you make a mistake again and again and again. You know that you did it wrong. You know immediately when you did it that, “Oh, I did that thing again,…
We Worry About Problems We Don't Even Have | Eastern Philosophy
Two people attend a house party, where they socialize with the same guests, drink from the same beer tap, and are exposed to the same music and atmosphere. They decide to share a taxi and drive home when the party is over as they live closely together. “…