yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Making Artificial Limbs More Comfortable | Nat Geo Live


3m read
·Nov 11, 2024

Sengeh: Hundred percent of people living with amputations experience prosthetic socket discomfort. It's both a technology problem and it's a science problem because we don't really know how to connect the body to machines. (applause) There are ten million people living with amputations globally. They could have gotten those from accidents, victims of war, or diabetes. They range from people who are in the US to people who are in my home in Sierra Leone to Cambodia, all over the world. But one thing is constant. Hundred percent of them experience prosthetic socket discomfort. That's a residual limb with bones inside. That is very different for everybody. The part that connects that residual limb to the prosthetic leg is uncomfortable. And part of that is because the way we conventionally make prosthetic sockets today is through an artisanal process for an ever-changing human body that is so diverse across the population and across the whole world.

And the way prosthesis prosthetic sockets are designed today is you go to a prosthetist and they take your leg and they squeeze your leg and ask you, "How does that feel if I press here a little bit does it feel great? What about that, what about your patellar tendon? What about this bone that's there is there a bone in there I don't know? How did this happen?" You get the picture. It is not repeatable. It is based on the experience of the prosthetist. And the mold that is created is based on somebody's experience.

You create and alter that positive mold, you make a negative mold and then you pour another positive mold inside and then you modify that, and then you make a test socket and then the person goes into the test socket they give you feedback, like telling "Oh, I don't think it's comfortable here" and then you modify it again and then you do this over and over and again. Until you or the person goes, "Yeah, it's fine, I can work in this." (audience laughter) And when you do get carbon fiber sockets of single material you have your residuum get blisters and pressure sores. If you look closely around the fibular head there you can see some blood spots. It's both a technology problem and it's a science problem because we don't really know how to connect the body to machines.

So, one of the things that I was interested in with my boss was how do you understand the science behind designing for comfort. So, on the left is a fit-socket, which is an array of indentors in which the person inserts their residuum to capture experimental data of force, displacement and time so we can use it to characterize the model of the person's body. I decided that it was perhaps useful to link those points with a MRI, so that we can create models and we can link the experimental data to the modeling data directly. So, we have these markers that you can see in an MRI and you segment that MRI, so we define the bones, define the skin, define all the other soft tissue. And then we can create in an exact replica, so we can ask questions around design of the interfaces we have.

And then we can build models that is predictive, and we can use these to now say what happens inside the body. How is the soft tissue straining around the bone. We can test all of these now and go in and say "Well, we don't need to make a single material socket anymore. We can now take your body with all those markers that we put and that model that we created that was validated and that's predictive create an element all across your body with which we create the sockets where each color is a new material and test this hypothesis.*

Why does this all matter? Why... why does understanding the science of how we connect the body to machines matter? Your shoes still give you blisters. If you know somebody who has scoliosis they hate wearing their brace. If you have a knee or an ankle injury, you hate your braces. And that's because we don't know how to connect the body comfortably to machines. And, the science behind designing for comfort really starts from being able to merge these experimental and numerical data and build predictive models, and ask questions around how our design actually affects the behavior of the body as we use these machines in time and across loads and across different terrains.

More Articles

View All
How to stop quarantine from ruining your life
When self-isolation first started, I was like, “You know what? This is gonna be a piece of cake! I work from home, I’m at home all the time, this should be a cakewalk.” [Applause] [Music] It was a lot harder than I thought it would be, especially at the b…
10 Things I'm Not Buying in 2021 (Tips for Saving Money)
[Music] Hey guys, welcome back to the channel! In this video, I’m going to be talking about 10 things I’m specifically not buying in 2021 in an attempt to save a little bit more money. Now, I actually really do enjoy watching the videos that other financ…
The More You Try, The Worse You Feel | On Mood Swings
Wise people of the past have emphasized the impermanence of things. Consider Marcus Aurelius, repeatedly contemplating the transience of everything and how we all eventually fall away in the face of death. Or how Lao Tzu mentioned that a violent wind does…
How I started selling private jets!
People always ask me all the time, “How did you get started selling private jets?” I used to work in this nightclub restaurant almost every night, and this one gentleman who used to come in had a jet on his tie pin. I would ask him, “Why would you have a …
Multiplying and dividing by 10, 100, 1000
[Instructor] In this video, we’re gonna think about what happens when we multiply or divide by 10, 100, or 1,000. Let’s just start with an example. Let’s say we wanna figure out what 237 times 10 is. Pause this video and see if you can have a go at it. …
Scaling functions horizontally: examples | Transformations of functions | Algebra 2 | Khan Academy
We are told this is the graph of function f. Fair enough. Function g is defined as g of x is equal to f of 2x. What is the graph of g? So, pause this video and try to figure that out on your own. All right, now let’s work through this. The way I will thi…