yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
2015 AP Calculus BC 6a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
The McLen series for a function ( f ) is given by, and they give it in Sigma notation, and then they expand it out for us. It converges to ( f(x) ) for the absolute value of ( x ) being less than ( R ), where ( R ) is the radius of convergence of the McLe…
There Is Something Hiding Inside Earth
We’ve found a new planet, home to octillions of the most extreme beings living in the most absurd and deadly hellscape. In absolute darkness, crushed by the weight of mountains, starved of oxygen, cooked alive, bathed in acid, salt or radiation. And yet, …
IPO Data Exposes the Stock Market Overvaluation in 2022...
So you might have heard the term IPO at some point over the past year, and that’s because there’s been a lot of IPOs happening. The acronym stands for Initial Public Offering, and this is the process where a private company becomes a public company. So pr…
Cool Things on YouTube and More! DONG #19
Hey, Vsauce. Michael here. Do you remember that Italian researcher I met in an airplane a couple of months ago? Well, I had to learn more, and so we’re gonna meet tomorrow here in Rome, Italy. In the meantime, here’s some cool things on the internet that …
Charlie Munger's Final Advice For 2024.
I basically believe in a soldier on system. Lots of hardship will come, and you got to handle it well. I soldering through Charlie Munger, sadly passed away in November 2023, one month shy of his 100th birthday. But in a big stroke of luck for us investor…
Reminder: Support Khan Academy today!
Hi, Sal Khan here from Khan Academy, and I just want to remind you that as we get to the final few days of 2020, which has been a tough year, I think for most of us, there’s also the final few days of our end of year giving campaign. As we go through tho…