yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
Down on Luck | Wicked Tuna: Outer Banks
Perfect time to catch the blue fin. Oh, oh, there’s some tones over there! They’re coming this way. Looks like a pretty good pot of them too. Dear Jesus, please God, let us get a fish right now. We are desperate to get some more meat on the boat. We’ve o…
50 Rules for a SIMPLE LIFE (Practical Advice)
Do you sometimes feel the need to drop everything, move to the countryside, to the beach, or the mountains, and just live a simple life? Do you feel overwhelmed, anxious, tired, and stressed? Well, this is because you’ve over complicated your life to an e…
Charlie Munger Warns About the Stock Market. This is His Portfolio Now
Just this past week, Charlie Munger sat down for a rare interview. In this interview, Charlie Munger warned that this current stock market is, quote, “the craziest market I have ever seen.” Considering Charlie Munger is 97 and has lived through his fair s…
GoodBoy3000 | Khaffeine, an audio journey by Khan Academy
[Music] Every morning, your neural chip alarm goes off at 5 a.m. metropolitan standard time. You’d prefer to be woken up by the sun, but nobody in your sector of the city is allowed to venture to the upper levels to experience real sunlight. Oh well, chip…
15 Ways To Make 1 Million Dollars
1,700 new millionaires are created every day; that’s over 620,000 new millionaires every year. How come so many people become millionaires, and why can’t you do the same? Well, it’s actually about positioning and how valuable you are in the marketplace. I…
What IS THIS??? IMG! 15
Don’t be scared. Relax and snuggle up. It’s episode 15 of [Music]. These shoes look nice, but when you wear two and put your heels together, it looks like—oh! And here are some shoes from designer Brass Monkey: R2-D2, Batman, Robin, Mario, Luigi, Woody, …