yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
How To Cold Email Investors - Michael Seibel
Founders often ask me how to cold email an investor when they’re interested in raising money. I receive tons of cold emails from founders, and I try to actually reply to all of them. Here are some tips on some things you should and shouldn’t do when cold …
Kevin O'Leary talks Mortgages and the Market
You’re listening to the Real Estate Talk Show with Simon Janini and Aaron McCoy on Talk Radio AM 640. Welcome back to the Real Estate Talk Show here on Talk Radio AM 640, your source for all things real estate. Now, it’s time for an interview with an exp…
Finding decreasing interval given the function | Calculus | Khan Academy
Let’s say we have the function ( f(x) = x^6 - 3x^5 ). My question to you is, using only what we know about derivatives, try to figure out over what interval or intervals this function is decreasing. Pause the video and try to figure that out. All right,…
The AMAZING Benefits of COLD Showers
Hey, it’s Joey and welcome to Better Ideas. You’ve probably heard the news - cold showers are the secret to unlocking your inner potential and giving you superpowers beyond your wildest dreams. Now, there are a ton of YouTube videos and articles online t…
Newton's first law | Physics | Khan Academy
You’re standing in a bus at rest, without any support. Suddenly, the bus starts moving, and you fall back, as if someone pushed you back. Why does this happen? You get back on your feet, and now suddenly the bus stops, and you fall forward, as if someone …
The Logan Paul Cryptocurrency Scam Just Got Worse...
What’s up, Graham? It’s guys here. So, I certainly did not expect to make this video today. But when I see so many people calling out this new Logan Paul cryptocurrency scam, I felt the need to throw my hat into the ring, see what this is all about, and g…