yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
The West Indies and the Southern colonies | AP US History | Khan Academy
[Instructor] When we think of British colonies in the Americas before 1776, we tend to think of the 13 colonies. Those colonies that were located along the eastern seaboard of North America and which rebelled as a group in the American Revolution. But if …
The age of empire | Rise to world power (1890-1945) | US History | Khan Academy
So I have a map here of United States possessions in the Pacific and in the Caribbean today, and they’re kind of all over the place. I mean, some of them are pretty tiny. There’s Guam, which is just barely a little speck on the map, and American Samoa. An…
Spider vs Penis (Priapism) - Smarter Every Day 98
Alright, so this video may not be appropriate for kids, and it is, uh… It’s disturbing on several different levels. Especially if you’re a man… So, you know, on Smarter Every Day, I try to keep everything very intelligent and respectful, but this video is…
Mistakes when finding inflection points: second derivative undefined | AP Calculus AB | Khan Academy
Robert was asked to find where ( g(x) ), which is equal to the cube root of ( x ), has inflection points. This is his solution, and then later we are asked if Robert’s work is correct. If not, what’s his mistake? So pause this video and try to figure it o…
Safari Live - Day 288 | National Geographic
Fricken Safari and may include animal kills and caucuses. Viewer discretion is advised. Look at the beautiful kudus! At the moment, they are all just trying to investigate what is happening in the surrounding. What a lovely afternoon! Most of all, welcome…
Translation (mRNA to protein) | Biomolecules | MCAT | Khan Academy
So we already know that chromosomes are made up of really long strands of DNA all wound up into our into themselves. Something like I’m just kind of drawing it as a random long strand of DNA all wound up in itself. On that strand, you have sequences which…