yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
Will $60,000/month make you happy?
Are you happier now that you get to hang out with your friends in May? That’s a sixty thousand a month surprising answer. No, no, I’m just kidding. Yes, like yes, a lot! I’m 100 percent no extra. I know, okay, definitely. Okay, money will not cure who you…
Cannon Shock Waves in Ultra Slow Motion - Smarter Every Day 200
Hey, it’s me Destin. Welcome back to Smarter Everyday. Today, we’re in rural Tennessee for an actual artillery competition. And if you learn anything from this truck that’s coming up behind me, this is pretty legit. There’s dudes from all over the country…
Watchers of the Land | Short Film Showcase | National Geographic
[Music] And you can’t ever lose your history or your stories; otherwise, you’ll lose who you are. It’s the Den way to pass on your teachings to younger [Music] people. A lot has changed since the 50s, and now that we do have a say, you know, we’re going t…
Who has the Deathly-est Hallows? Harry Potter or Dr Strange --NERD WARS
Hey everybody! Welcome to Nerd Wars. I’m Fatih and I’m Jeff. We decided to do one topical: it’s Harry Potter versus Doctor Strange. I’ll be arguing Harry Potter, and I’ll be arguing Doctor Strange. Harry Potter is real! It’s real! They got a wand, and yo…
Breaking apart 2-digit addition problems | Addition and subtraction | 1st grade | Khan Academy
Let’s think about ways to break up addition problems. And this is useful because if we break them up in the right way, it might be easier for us to actually compute the addition. So let’s look at this first question. Lindsay isn’t sure how to add 39 plu…
The elements of a story | Reading | Khan Academy
Hello readers! I’m going to draw you a map right now, and it’s going to look like I’ve drawn a mountain. But it’s not a map of a mountain; it’s a map of a story. What you’re saying: how do you map a story? What makes a story pointy? These are great quest…