yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
Don’t Feel Harmed, And You Haven’t Been | The Philosophy of Marcus Aurelius
Marcus Aurelius pointed out that regardless of the severity of circumstances, there’s always a choice in how we judge them. “Choose not to be harmed—and you won’t feel harmed. Don’t feel harmed—and you haven’t been,” he stated. Marcus’ instruction sounds…
Mohnish Pabrai: How to Invest in an Overvalued Market (2021)
I never focus on what is happening in markets and, uh, you know, macro events and all of that. I think at the end of the day what matters is how does a particular business do over a long period of time. I think the important thing in investing is can I te…
Charlie Munger's Alibaba Confession at the Daily Journal Annual Meeting (2023)
This video is sponsored by Morning Brew. Sign up to their free daily newsletter via the link in the description. I regret Alibaba’s one of the worst mistakes I ever made. I got over charmed by the people who were leading in the online retailing, and I di…
The Dangers of Kite Surfing | Science of Stupid: Ridiculous Fails
Ben Aaron: In the 1800s, as engineers searched for cost effective alternatives to horses and steam for powering public transport, wind, in the form of large kites, was seriously considered. But now, after two centuries of development, we still don’t have …
Virtual Girlfriends!! And Other VSAUCE WTFs
Hey, Vsauce! Michael here, and I’ve got some good news. Today, I’m bringing you a bunch of Vsauce WTFs, and hey, those always make people happy. First, a replay from Pro Evolution Soccer 2008. The goalie stops the ball, and as we move forward frame by fr…
Startup Experts Share Their Investor Horror Stories
Raising money is a game that you sort of have to figure out. Oftentimes, these meetings can go terribly awry. The worst sort of investor meeting is one that makes you question why you’re even doing a company anymore. Today, we’re talking about our worst i…