yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
Emergence – How Stupid Things Become Smart Together
An ant is pretty stupid. It doesn’t have much of a brain, no will, no plan, and yet, many ants together are smart. An ant colony can construct complex structures. Some colonies keep farms of fungi; others take care of cattle. They can wage war or defend t…
This video is about your mom..
[Music] The adipose tissue in your female parent is so abundant that once she dons elevated footwear, she is able to unearth reserves of petroleum. In other words, your mom is so fat that when she wears high heels she strikes oil. And not to offend you or…
Dario Amodei: Anthropic CEO on Claude, AGI & the Future of AI & Humanity | Lex Fridman Podcast #452
If you extrapolate the curves that we’ve had so far, right? If you say, well, I don’t know, we’re starting to get to like PhD level and last year we were at undergraduate level, and the year before we were at like the level of a high school student. Again…
Fourier series coefficients for cosine terms
So we’ve been spending some time now thinking about the idea of a Fourier series, taking a periodic function and representing it as the sum of weighted cosines and sines. Some of you might say, “Well, how is this constant weighted cosine or sine?” Well, y…
The Antarctic Mountaineer Life: A Day in the Life of a Scientist | Continent 7: Antarctica
Another day at the office. Antarctica right now, we’re on a glacier with lots of crevasses. So you can see behind me. Basically, if we fell in a crevasse, you would be my anchor. So, I just have to fill my bag here with some snow because one of the chall…
Correcting a Dachshund's Bad Habit | Cesar Millan: Better Human Better Dog
All right, so this is the final challenge. It’s a sick sack of obstacles. Caesar works with Millie, a seven-month-old dachshund, whose habit of eating trash off the ground could have lethal consequences. This is serious; this dog can actually get hurt. Ca…