yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
NOW OPEN: Reinvent Mastery by Alux.com
Picture who you want to be 5 years from now. What do you see? Can you imagine where you are, what you’re doing, and who’s around you? Take a mental picture of that. Now, open your eyes up and come back to the present moment. What does your current pictur…
Valence electrons and ionic compounds | AP Chemistry | Khan Academy
In this video, we’re going to get even more appreciation for why the periodic table of elements is so useful. In particular, we’re going to focus on groups of the periodic table of elements. When we talk about a group, we’re just talking about a column. A…
Safari Live - Day 304 | National Geographic
[Music] This program features live coverage of an African safari and may include animal kills and caucuses. Viewer discretion is advised. Hello everyone, and a very warm welcome to a sunset drive. We are in the Mara Triangle in Kenya, and we have that be…
Rival and excludable goods
In this video, we’re going to do a bit of a deep dive in classifying different types of goods. Before we even get into the thick of things, I’m going to make some definitions. So the first definition is that of a rival good. Now, a rival good—one way to …
Crowdfunding campaign: Give Me Your Ball
Why don’t we start by telling? By introducing. Why don’t we start by having? Let’s start. My name is Thomas K. A couple of years ago, I made the film “George Ought to Help.” Last year, with the help of crowdfunding, I made the film “Edgar the Exploiter.”…
Now in Their 70s, Two Friends Return to the Arctic for One More Adventure | Short Film Showcase
I was looking through my journal from our first trip here 35 years ago. One of the things that struck me as I was reading it, I had hiked up to the top of one of the peaks here and had to turn around and come down. Because you don’t spend all of your time…