yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
How To Get Rich According To Jeff Bezos
There are a million ways to make $1,000,000. And this is how Jeff Bezos did it. He needs no introduction. Right. So let’s just cut straight to the chase. Customers have the money, not the competition. Well, many people think about the competition. Bezos …
Definite integrals of sin(mx) and cos(mx)
In the last video, we introduced the idea that we could represent any arbitrary periodic function by a series of weighted cosines and sines. What I’m going to start doing in this video is establishing our mathematical foundation, so it’ll be pretty straig…
Charlie Munger: Investing During the 2023 Recession
If you think we might have on and off waves of inflation like we did prior to when Volcker stepped in at the Fed, the 70s era, of course it will happen some in the future. Yes, I think we’ll have some of that in the future. I think more inflation over th…
Why The $1 Electric Scooter Will TAKE OVER The World
And for all the young entrepreneurs out there, just realize that sometimes it’s the most simple ideas that often do the best. I think we have the natural tendency just to overcomplicate things because we believe the more complicated something is, the bett…
How a broken, screwed-up life can be beautiful (Kintsugi)
Imagine having a beautiful vase decorating your living room. And it’s not just a vase; it’s a genuine nineteenth-century, hand-painted piece of porcelain created in the Satsuma province in Japan. One day, your neighbor’s dog sneaks into your garden, walks…
Time Is But a Stubborn Illusion - Sneak Peek | Genius
What is time? A deceptively simple question, yet it is the key to understanding relativity. It is sort of the reason my hair is going gray. [laughter] When we describe motion, we do so as a function of time: 10 meters per second, 100 miles per hour. But t…