yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got this function ( f(x) ) that is piecewise continuous. It's defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ).

What we want to do is we want to find the limit of ( f(x) ) as ( x ) approaches 2. What's interesting about the value 2 is that that's essentially the boundary between these two intervals. If we wanted to evaluate it at 2, we would fall into this first interval. ( f(2) ) well, 2 is less than or equal to 2 and it's greater than 0, so ( f(2) ) would be pretty straightforward. That would just be ( \ln(2) ). But that's not necessarily what the limit is going to be.

To figure out what the limit is going to be, we should think about well, what's the limit as we approach from the left? What's the limit as we approach from the right? And do those exist? And if they do exist, are they the same thing? If they are the same thing, well then we have a well-defined limit.

So let's do that. Let's first think about the limit of ( f(x) ) as we approach 2 from the left, from values lower than 2. Well, this is going to be the case where we're going to be operating in this interval right over here. We're operating from values less than 2 and we're going to be approaching 2 from the left. Since this case is continuous over the interval in which we're operating, and for sure between all values greater than 0 and less than or equal to 2, this limit is going to be equal to just this clause evaluated at 2. Because it's continuous over the interval, this is just going to be ( \ln(2) ).

All right, so now let's think about the limit from the right-hand side, from values greater than 2. The limit of ( f(x) ) as ( x ) approaches 2 from the right-hand side. Well, even though 2 falls into this clause, as soon as we go anything greater than 2, we fall into this clause. So we're going to be approaching 2 essentially using this case.

Once again, this case here is continuous for all x values, not only greater than 2, actually greater than or equal to 2. For this one over here, we can make the same argument that this limit is going to be this clause evaluated at 2. Because once again if we just evaluated the function at 2, it falls under this clause. But if we're approaching from the right, well from approaching from the right those are x values greater than 2, so this clause is what's at play.

So we'll evaluate this clause at 2. Because it is continuous, this is going to be ( 2^2 \cdot \ln(2) ). So this is equal to ( 4 \cdot \ln(2) ).

The right-hand limit does exist; the left-hand limit does exist. But the thing that might jump out at you is that these are two different values. We approach a different value from the left as we do from the right. If you were to graph this, you would see a jump in the actual graph. You would see a discontinuity occurring there.

So for this one in particular, you have that jump discontinuity. This limit would not exist because the left-hand limit and the right-hand limit go to two different values. So, the limit does not exist.

More Articles

View All
Rewriting expressions with exponents challenge 2 | Algebra 1 (TX TEKS) | Khan Academy
So we have an expression here that has a bunch of exponents in it. It seems kind of complicated, and what I want you to do, like always, is pause this video and see if you can work through this yourself. Essentially, working through this means simplifying…
Lecture 14 - How to Operate (Keith Rabois)
So I’m going to talk about how to operate. I’ve watched some of the prior classes, and I’m going to assume that you’ve already sort of hired a bunch of relentlessly resourceful people, that you built a product that at least some people love, that you prob…
How To GET SMARTER In 2023
How to get smarter in 2023 the Alux way. Hello, Alexers! We hope you had a wonderful time during the holidays and don’t worry, the Alex lady will be back this week. But some of you might be already familiar with my voice from the Alux app. Now, back to t…
Khan Academy Live: SAT Math
Hello and welcome to Khan Academy live SAT. I’m Eric, I’m an SAT tutor and one of the SAT experts here at Khan Academy, and I’m so excited to be with you today and over the course of the next few weeks as we cover SAT Math, reading, and writing with one c…
Why your life is so boring
When we think about our life, we usually think about it in the form of a story. You know, first we were born, and then we did some things and made some memories, and now we’re here and we work in our job or whatever. But in the future, we plan on doing mo…
Sign convention for passive components | Electrical engineering | Khan Academy
Today we’re going to talk about the sign convention for passive components. It’s a big mouthful, but it’s a fairly simple idea. So first of all, let’s look at this word: passive. Passive is the way we describe components that do not create power or compo…