yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Deriving Lorentz transformation part 2 | Special relativity | Physics | Khan Academy


3m read
·Nov 11, 2024

We left off in the last video trying to solve for gamma. We set up this equation, and then we had the inside that, well, look, we could pick a particular event that is connected by a light signal. In that case, X would be equal to CT, but also X Prime would be equal to CT Prime. If gamma's going to hold for any transformations between events between x and x Prime and T and T prime, it should definitely hold for this particular event.

So maybe we could use this to substitute back in and solve for gamma. That's exactly what we're going to do right now. For all the X's, I'm going to substitute it with the CT's. So I'm going to substitute it with the CT. So X becomes CT, X becomes CT, and that's it.

All the X primes I'm going to substitute with a CT Prime. So X Prime becomes CT Prime, X Prime becomes CT Prime, and then I have an X Prime here, so it's going to be CT Prime. Let's simplify, and now I'm going to switch to a neutral color.

I'm now going to have C * C * T * T Prime, so that's going to be c^2. Actually, let me just keep using the t and t primes. I'll still do a little bit of color coding. T Prime Prime is equal to gamma squared times, so it's going to be c^2 times T * T Prime.

Then we have plus C * V * T * T Prime. Plus C * V, I'll just write it this way: c times T times V times T Prime. Then we have minus, minus, let's see, we're going to have a c here, so minus C minus c * T * T times V * T Prime times V * T Prime.

I wrote this V in blue just so it matches up with this, and we see something interesting is about to happen. Finally, we have minus V^2 minus V^2 * T * T Prime times T * T Prime. It doesn't look that much simpler, but we're about to simplify it a good bit.

We're going to get these two middle terms to cancel out. So plus ctvt Prime minus ctvt Prime, so those are going to cancel out. Then every other term has a T T Prime in it, so let's divide both sides of this equation by T T Prime.

If we divide the left-hand side by T T Prime, you're just going to be left with c^2. Then we're just going to divide everything by T T Prime, and our whole thing has simplified quite nicely. Our equation is now, I'll continue it over here: our equation now is c^2 is equal to gamma squared times c^2 minus v^2.

Now we can divide both sides by c^2 minus v^2, and we would get gamma squared. I'm going to swap the sides too, so gamma squared is equal to c^2 over c^2 minus v^2. I'll write it all in one color now: c^2 minus v^2.

Now, if we like, we can divide the numerator and the denominator by c^2, in which case this will be equal to 1 over 1 minus v^2 over c^2. Now we are in the home stretch! We can just take the square root of both sides, and we get, we deserve a little bit of a drum roll. Actually, let me continue it up here where I have some real estate.

We get gamma is equal to the square root of this. Well, the square root of one is just one over the square root of the denominator: 1 minus v^2 over c^2. Hopefully, you found that as satisfying as I did, because all we did, we just thought about, well, the symmetry.

If x Prime is going to be some scaling factor times the traditional Galilean transformation, and X is going to be some scaling factor times the traditional Galilean transformation from the prime coordinates, we use that. It's important that we use one of the fundamental assumptions of special relativity: that the speed of light is absolute in either frame of reference, that x divided by T is C, and that X Prime over T Prime is going to be equal to C for some event that's associated with a light beam.

We used that to substitute back in, and we were able to solve for gamma. So this looks pretty neat! Some of you all might be saying, well, what about, what about our... So we've been able to do the derivation for the x coordinates, but what about the Lorentz transformation for the T and T Prime coordinates?

I'll let you think about how we do that, and I'll give you a clue: it's just going to be a little bit more algebra, and we're going to do that in the next video.

More Articles

View All
Capturing a Carnivorous Bat on Camera | National Geographic
[Music] When National Geographic asked me to photograph this bat story, I was really excited because it was an opportunity to work with some really interesting scientists, like Rodrigo. I get to work with the species I’ve never seen before. Very little h…
Khan Stories: Mr. Brown
One summer I realized, you know what, I think Khan Academy actually has all of this for me. So I spent the summer looking at it and I had two algebra classes, and I used one for like completely Khan Academy. I want you guys to watch the videos, do all t…
What Would Elon Musk Work On If He Were 22?
You famously said when you were younger there were five problems that you thought were most important for you to work on. If you were 22 today, what would the five problems that you would think about working on be? Well, I think if somebody is doing some…
A Suspiciously Expensive Delivery | To Catch a Smuggler: South Pacific | National Geographic
Auckland International Airport processes 21 million passengers every year and climbing. Customs and Immigration have just been alerted to a visiting Lithuanian woman with quite a history. Officer James is keen to take on the case. It looks like she had so…
Interactive Innovations | Epcot Becoming Episode 3 | National Geographic
We’re pushing technology within our ride systems, showing that we can create amazing things together. Frozen Ever After was really the first attraction to use all electric motor audio animatronics figures. Traditionally, all of the audio animatronics figu…
The Unspoken Rules of Society
You wake up in the morning, head outside and you say good morning to your next-door neighbor. You walk down the street and you see a familiar face, so you nodded them to let them know that you acknowledge them. You get into a bus and an old lady walks in …