yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Deriving Lorentz transformation part 2 | Special relativity | Physics | Khan Academy


3m read
·Nov 11, 2024

We left off in the last video trying to solve for gamma. We set up this equation, and then we had the inside that, well, look, we could pick a particular event that is connected by a light signal. In that case, X would be equal to CT, but also X Prime would be equal to CT Prime. If gamma's going to hold for any transformations between events between x and x Prime and T and T prime, it should definitely hold for this particular event.

So maybe we could use this to substitute back in and solve for gamma. That's exactly what we're going to do right now. For all the X's, I'm going to substitute it with the CT's. So I'm going to substitute it with the CT. So X becomes CT, X becomes CT, and that's it.

All the X primes I'm going to substitute with a CT Prime. So X Prime becomes CT Prime, X Prime becomes CT Prime, and then I have an X Prime here, so it's going to be CT Prime. Let's simplify, and now I'm going to switch to a neutral color.

I'm now going to have C * C * T * T Prime, so that's going to be c^2. Actually, let me just keep using the t and t primes. I'll still do a little bit of color coding. T Prime Prime is equal to gamma squared times, so it's going to be c^2 times T * T Prime.

Then we have plus C * V * T * T Prime. Plus C * V, I'll just write it this way: c times T times V times T Prime. Then we have minus, minus, let's see, we're going to have a c here, so minus C minus c * T * T times V * T Prime times V * T Prime.

I wrote this V in blue just so it matches up with this, and we see something interesting is about to happen. Finally, we have minus V^2 minus V^2 * T * T Prime times T * T Prime. It doesn't look that much simpler, but we're about to simplify it a good bit.

We're going to get these two middle terms to cancel out. So plus ctvt Prime minus ctvt Prime, so those are going to cancel out. Then every other term has a T T Prime in it, so let's divide both sides of this equation by T T Prime.

If we divide the left-hand side by T T Prime, you're just going to be left with c^2. Then we're just going to divide everything by T T Prime, and our whole thing has simplified quite nicely. Our equation is now, I'll continue it over here: our equation now is c^2 is equal to gamma squared times c^2 minus v^2.

Now we can divide both sides by c^2 minus v^2, and we would get gamma squared. I'm going to swap the sides too, so gamma squared is equal to c^2 over c^2 minus v^2. I'll write it all in one color now: c^2 minus v^2.

Now, if we like, we can divide the numerator and the denominator by c^2, in which case this will be equal to 1 over 1 minus v^2 over c^2. Now we are in the home stretch! We can just take the square root of both sides, and we get, we deserve a little bit of a drum roll. Actually, let me continue it up here where I have some real estate.

We get gamma is equal to the square root of this. Well, the square root of one is just one over the square root of the denominator: 1 minus v^2 over c^2. Hopefully, you found that as satisfying as I did, because all we did, we just thought about, well, the symmetry.

If x Prime is going to be some scaling factor times the traditional Galilean transformation, and X is going to be some scaling factor times the traditional Galilean transformation from the prime coordinates, we use that. It's important that we use one of the fundamental assumptions of special relativity: that the speed of light is absolute in either frame of reference, that x divided by T is C, and that X Prime over T Prime is going to be equal to C for some event that's associated with a light beam.

We used that to substitute back in, and we were able to solve for gamma. So this looks pretty neat! Some of you all might be saying, well, what about, what about our... So we've been able to do the derivation for the x coordinates, but what about the Lorentz transformation for the T and T Prime coordinates?

I'll let you think about how we do that, and I'll give you a clue: it's just going to be a little bit more algebra, and we're going to do that in the next video.

More Articles

View All
TIL: We Waste One-Third of Food Worldwide | Today I Learned
Now, here we have an ordinary loaf of homemade bread. Watch closely: bread disappearing before our very eyes. “Oh madam, that is nothing! You far excel me at making bread disappear.” “What are you talking about? I can’t make anything disappear. A third …
No Solar in the Sunshine State | Years of Living Dangerously
Here in Florida, people are only allowed to buy their power from utilities, not from independent solar companies. I’m super excited that we’re all here! This is about choice—consumers having the right to choose solar power without your name. I see that th…
FRENCH KISS A ROBOT! Mind Blow #16
The N64 upside down looks like a koala’s face. And here’s a wall that changes color when you pee on it. Vsauce. Kevin here. This is Mind Blow. This jet pack of sorts just set a record by flying for seven straight minutes. The company claims their current…
The Power of Radical Acceptance
Some experiences weigh on us like a heavy cross that’s almost impossible to bear. They paralyze us with guilt or make us hide in shame. And in other cases, they leave us with an immense amount of pain for us to process. Many people either fight or stick t…
Is this the coolest office? pt. 3
And presidential issues in the United States—nothing positive—but it happens to be from the day of my birthday, so I can’t change anything about that. I see your door over there; it’s quite interesting. What inspired you with that decision? This is my se…
for loops with range() | Intro to CS - Python | Khan Academy
When we write a standard while loop, we need an assignment statement to initialize our loop variable to a start value and an assignment statement to update our loop variable on each loop iteration. In many cases, though, our loops are just counter-based, …