yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
'This Is Karma, Ladies And Gentlemen!': Dana White Speaks During Trump Victory Celebration
We also have a Manda White who has done some job. He’s that tough guy. So Dana started UFC and, uh, came to me. Do you mind if I use your? Nobody wanted to give him a ring because they said it’s a rough sport—a little rough. I helped him out a little bit,…
Real Estate Investing 101: Top 5 Most PROFITABLE Renovations
What’s up, you guys? It’s Graham here. So, I’m here with this special guest. Some of you may have met him before, but those that haven’t should probably meet Kevin. We’re gonna be talking about the most profitable renovations that you can be doing. Anytim…
Order of operations with fractions and exponents | 6th grade | Khan Academy
Pause this video and see if you can evaluate this expression before we do it together. All right, now let’s work on this together. We see that we have a lot of different operations here. We have exponents, we have multiplication, we have addition, we hav…
Over- and under-estimation of Riemann sums | AP Calculus AB | Khan Academy
Consider the left and right Riemann sums that would approximate the area under y is equal to g of x between x equals 2 and x equals 8. So we want to approximate this light blue area right over here. Are the approximations overestimations or underestimatio…
Do Technical Founders Need Business Co-Founders?
Oh yeah, well Michael, I could go do sales. That’s not hard. I can definitely reply to emails. Yes, you know, I could. Well, doter, are you going to do that? [Laughter] Welcome to Dalton Plus, Michael! Today we’re going to talk about, do you need a busi…
How Philosophers Handle Rejection (Diogenes, Schopenhauer, Epictetus & Zhuangzi)
Living in absolute poverty, the great cynic philosopher Diogenes slept in public places and begged for food. One day, he begged in front of a statue. When someone asked him why he did so, Diogenes answered: “To get practice in being refused.” For a beggar…