yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
Down on Luck | Wicked Tuna: Outer Banks
Perfect time to catch the blue fin. Oh, oh, there’s some tones over there! They’re coming this way. Looks like a pretty good pot of them too. Dear Jesus, please God, let us get a fish right now. We are desperate to get some more meat on the boat. We’ve o…
What Basic Game Theory Teaches Us About Startups
They never get the lessons in little dabs along the way. Like, you know, as kids, we’re used to getting these little lessons along the way. For these zero-sum games, often the lesson just comes fast and hard at the end. It’s like, “Oh!” This is Michael Se…
THE FED JUST CRASHED THE MARKET | Major Changes Explained
What’s up guys, it’s Graham here. So, it’s confirmed, as of a few hours ago, the Federal Reserve just raised their benchmark interest rates by another 75 basis points. This means we are now sitting at the highest interest rates that we’ve seen since 2007,…
The reason I built the worlds first private jet showroom!
The reason I built the first and only Aviation showroom in the world is because nobody else has. I had to be different. Everybody in our industry today lives off a mobile phone and a laptop; that’s a business, that’s their office. To me, it just doesn’t s…
Less versus fewer | Frequently confused words | Usage | Grammar
Hello Garian, hello Rosie, hi David. Uh, so you’ve called me into the recording booth today? Yes, because uh, you have a bone to pick with me—just a little bit. Yeah, so I have always, in my usage, I always drawn a distinction between less and fewer. I w…
Leonard Susskind on Richard Feynman, the Holographic Principle, and Unanswered Questions in Physics
What I wanted to start with is you’ve often been characterized as someone with like non-traditional, you know, kind of out there ideas. Some of which have become, you know, part of the physics canon; some of which, who knows what happened. Who they all be…