yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
P-values and significance tests | AP Statistics | Khan Academy
Let’s say that I run a website that currently has this off-white color for its background, and I know the mean amount of time that people spend on my website. Let’s say it is 20 minutes, and I’m interested in making a change that will make people spend mo…
Ruby Jean's Juicery | Black Travel Across America
That same spirit is alive and healthy today all over this city. Black owned spaces have a knack for preserving our past while nurturing the future. So you brought her in? Case in point, Ruby Jean’s Juicery, which combines nutritious food with family root…
Worked example identifying sample study
Let’s look, let’s take a look at some statistical studies and see if we can figure out what type they are. So this first one, Roy’s toys received a shipment of 100,000 rubber duckies from the factory. The factory couldn’t promise that all rubber duckies a…
3D Audio Machu Picchu Hike (Wear Headphones) - Smarter Every Day 68A
Hey, it’s me Destin. Welcome back to Smarter Every Day. This is Gordon. He’s been doing the sound for Smarter Every Day for years. This is the first time we’ve met, but it’s in Peru. Pretty crazy—it’s awesome. He’s from Canada. So what are we doing here?…
Chip Rescues Agnes | Life Below Zero
My back here, it’s got coolant all over the ground. I was just wondering if you’re going to just double up and keep going or else, um, because we’re almost here. Finish the delivery. Finish the delivery. We’ll go deliver this thing, and we’ll come back h…
Fossils and rock layers | The geosphere | Middle school Earth and space science | Khan Academy
Have you ever wanted to travel back in time? Would you go meet your younger self? Would you go and ride a dinosaur, or would you meticulously create a timeline of the earth’s 4.6 billion year long history based on major geological events? Even though geo…