yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
Current | Introduction to electrical engineering | Electrical engineering | Khan Academy
All right, now we’re going to talk about the idea of an electric current. The story about current starts with the idea of charge. So, we’ve learned that we have two kinds of charges: positive and negative charge. We’ll just make up two little charges like…
Scorpion Kill Survival Skills | The Great Human Race
That is a scorpion. As drought ravaged the once lush Arabian Peninsula, early Homo sapiens moving through the desert to the monsoon-soaked areas along the coast would be forced to adjust to a drastic change in their diet. It’s going to come for you. With…
Countries inside Countries
When it comes to neighbors, most countries have several options: like North to Canada or South to Mexico. But there are countries that don’t have this freedom of choice, not because they’re islands but because they’re trapped in another country. For examp…
Letting Go Of Resentment (Stoic & Buddhist perspectives)
There’s something special I would like to share with you today because very recently life taught me another lesson about resentment. Letting go of resentment is actually a lot easier than the mind makes us believe. I would like to share with you what I’ve…
Sketching exponentials
Now I want to show you a really useful manual skill that you can use when you have voltages that look like exponentials. We’re going to talk about this exponential curve here that’s generated as part of the natural response of this RC circuit. We worked …
Warren Buffett: How Smart Investors Easily Identify Terrible Stocks
In the end the better mouse trap usually wins but but the people with the second or third best mous trap will will try to keep that from happening. I the ones you name I don’t know anything about I mean I know what they do but I don’t I don’t know they sp…