yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
Interest Rate Cuts Have Begun.
The time has come for policy to adjust. The direction of travel is clear, and the timing and pace of rate cuts will depend on incoming data, the evolving outlook, and the balance of risks. Well, you heard it folks, that is Jerome Powell, the Chair of the …
15 Experiences You Have As You Get Richer
Your journey through life grows richer as your pockets do. More money means unlocking new levels of experiences and adventures. It’s not just about having fancy stuff; it’s about the unique, amazing things you get to do and see. Here are 15 experiences yo…
Equivalent fractions on number lines
So they’re telling us that r fifths is equal to eight tenths, and we need to figure out what r is going to be equal to. They help us out with this number line where they’ve put eight tenths on the number line. That makes sense because to go from zero to o…
The Holocaust | World History | Khan Academy
In this video, we’re going to talk about what is one of the darkest chapters in human history: the Holocaust, which involved the massacre of roughly 6 million Jews and as many as 11 million civilians in total. In order to understand the Holocaust, we’re g…
Tracing function calls | Intro to CS - Python | Khan Academy
What exactly happens when the computer executes a function call? Well, let’s trace a program with a function definition to find out. When we run the program, the computer, as normal, reads the program line by line starting at the top of the file. When th…
Virtual Mindfulness Retreat with Khan Academy and Headspace
And the intention for today’s hour is really just to relax, um, just to unwind. Not a lot of information coming at you, just embodied practices. And I know that a lot of you probably have commitments at home right now, maybe kids coming in. And so really …