yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
Everest Weather - Data is in the Clouds | National Geographic
Everest is one of the most extreme environments on the planet, and nobody has ever fully quantified the climate conditions up there. We’re going to be pushing the envelope, attempting to install the highest weather station in the world to improve our unde…
You're Either An Entrepreneur or You're WASTING MONEY | Randall Kaplan pt. 2
What is an entrepreneur, and can you learn to be one, or does it have to be in your DNA? When I was a young kid, I always knew I was going to start companies, but can you learn it if you’re not born with that gene? This is the age-old question you’ve rai…
ROBINHOOD JUST LAUNCHED A $1 INVESTMENT
What’s up guys! It’s Graham here, and it’s been about a month since I reported on this whole Robin Hood stock trading drama fiasco. Because for the most part, there really haven’t been any updates worth sharing, and I began to believe that things were set…
High Speed photography 101 - Pre-Smarter Every Day
Hey, it’s me, Destin. It is late; the kids are in bed, so it’s time to work on the next project. This time around, we’re going to start trying to take photos of stuff being hit by bullets. I think that moment that they’re hit by bullets is called high-spe…
The Mystery of Synchronous Fireflies - Smarter Every Day 274
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I grew up here in Alabama, like most kids in the area, learning how to catch lightning bugs and putting them in a jar. It’s a magical memory that most of a share. But today, on Smarter Every Day, we…
Graphs of rational functions: y-intercept | Mathematics III | High School Math | Khan Academy
Let F of x = A * x^n + Bx + 12 over C * x^m + Dx + 12, where M and N are integers and A, B, C, and D are unknown constants. All right, this is interesting! Which of the following is a possible graph of y equal F of x? They tell us that dashed lines indic…