yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
Ray Dalio on THE DEBT CYCLES
In these cycles, there are short-term cycles that build up to create a long-term cycle. So, uh, for example, we’re used to, uh, what’s commonly called the business cycle or the short-term debt cycle, in which there’s a recession when economic weakness and…
Jason Silva on Science, Adventure and Exploration | Brain Games
[Music] What does it mean to explore? What does it mean to adventure? Walker Percy wrote, “The search is what anyone would undertake if he were not sunk in the everydayness of his own life.” To be aware of the possibility of the search is to be on to some…
Homeroom with Sal & Arne Duncan - Wednesday, October 14
Hi everyone! Welcome to the homeroom live stream. Uh, we have a really exciting conversation today with Secretary Arne Duncan, uh, Secretary of Education under Barack Obama. Uh, but before we get into that, I will give my standard of announcements. Uh, f…
The Philosophy Of Cold Showers
Taking cold showers has become a normal part of my life. Even though I’ve taken many, cold showers still suck every single time to this day, but it takes me considerably less effort than the first time I took one. Besides the many physical benefits of col…
The Biggest Mistakes First-Time Founders Make - Michael Seibel
Here are some of the biggest mistakes first-time founders make when starting their company and in the first year afterwards. First, I often see founders choosing to solve a problem that they actually don’t care about. Well, this mistake isn’t fatal, and …
The Benefits of Ignoring People
The Book of Genesis recounts how Noah, following God’s orders, built an ark to survive a global flood, a task he was determined to complete. But people met him with ridicule when carrying out his task, as they found it hard to believe such an event could …