yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing motion problems: position | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Divya received the following problem: A particle moves in a straight line with velocity ( v(t) ) is equal to the square root of ( 3t - 1 ) meters per second, where ( t ) is time in seconds. At ( t = 2 ), the particle's distance from the starting point was eight meters in the positive direction. What is the particle's position at ( t = 7 ) seconds? Which expression should Divya use to solve the problem?

So pause this video and have a go at it all right now.

Let's do this together! So we want to know the particle's position at ( t = 7 ). They tell us what our position is at ( t = 2 ). Thus, the position at ( t = 7 ) would be your position at ( t = 2 ) plus your change in position from ( t = 2 ) to ( t = 7 ).

There's another word for this; you could also call this your displacement from ( t = 2 ) to ( t = 7 ). We know how to think about displacement: velocity is your rate of change of displacement. If you want to figure out your displacement between two times, you would integrate the velocity function.

So this is going to be the integral from ( t = 2 ) to ( t = 7 ) of our velocity function ( v(t) , dt ). This would be our displacement from time ( 2 ) to time ( 7 ). If they asked what our change in position from time ( 2 ) to time ( 7 ) is, it would be just this expression.

But they want us, or they want Divya, to figure out what the particle's position is at ( t = 7 ) seconds. So what you would want to do is take your position at ( t = 2 ). We know what our position at ( t = 2 ) is; it was 8 meters in the positive direction, so we could just call that positive 8 meters.

Therefore, it’s going to be ( 8 ) plus your change in position, which is going to be your displacement. We can see this choice right over there, and that’s what we would pick.

The first option, ( v(7) ), just gives us our velocity at time ( 7 ) or, exactly at ( 7 ) seconds, or in other words, our rate of change of displacement at ( 7 ) seconds. So that’s not what we want.

The second option shows your position at ( t = 2 ), but then you have your change in position from ( t = 0 ) to ( t = 7 ), so this doesn’t seem right.

Lastly, this is your position at time ( 2 ) plus ( v' ), the derivative of velocity, which is the acceleration, plus your acceleration at time ( 7 ). So that's definitely not going to give you the particle’s position. We like that second choice.

More Articles

View All
We Don’t Want Pleasure; We Just Want the Pain to End
Pleasure. We’re all after it in some way or another. Some limit themselves or are limited to simple pleasures. Others live lavishly, spending fortunes indulging in expensive delights just to experience a bit of satisfaction – and our consumerist culture e…
Learn to Love Your Mistakes
You mentioned in the book that you need to learn to love your mistakes. Even as I was telling you about my hopeless, uh—or not hopeless, but hapless, uh, tendencies, there’s a part of me I start to flush. I start to feel embarrassed. It’s like it’s a litt…
Stoicism: Conquer Your Resolutions
Thank you. What is your New Year’s resolution? For some of us, it’s to be more productive; for others, it’s to lose weight or simply be healthier. For you, it might be to spend more time with friends and family, or finally write that book that you’ve been…
Second derivative test | Using derivatives to analyze functions | AP Calculus AB | Khan Academy
So what I want to do in this video is familiarize ourselves with the second derivative test. Before I even get into the nitty-gritty of it, I really just want to get an intuitive feel for what the second derivative test is telling us. So let me just draw…
FAKE GAMES!
Hey Vsauce, how are you guys doing today? I’ve got a treat for you! I’m gonna be counting down my favorite fake game titles. Now, I stole this idea from Jeff and Adam, but honestly, Jeff lives in San Francisco, and the last thing he’s gonna do is come dow…
What Causes The Phases Of The Moon?
[Applause] Now I’ve been around Sydney and I’ve asked people what causes the phases of the moon, and you know what they say? How do we get the faces of the Moon? Uh, because of the Earth blocks the light that comes from the Sun. A full moon is basically w…