yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Equations with rational expressions | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have a nice little equation here dealing with rational expressions, and I encourage you to pause the video and see if you can figure out what values of x satisfy this equation.

All right, let's work through this together. The first thing I'd like to do is just see if I can simplify this at all, and maybe by finding some common factors between numerators and denominators or common factors on either side of the equal sign.

So let's factor all of these. All of the numerators and denominators, all the ones on the right-hand side are already done. So this thing up here I could rewrite as, let's see, what product is 21? What two numbers, when I take their product, is 21? Positive 21. So, they're going to have the same sign, and when I add them, I get -10.

Well, 7 and -3. So this could be written as (x - 7)(x - 3). This over here, both are divisible by three; I could rewrite this as 3(x - 4), and these are already factored.

So, the one thing that jumps out to me is I have (x - 4) in the denominator on the left-hand side and on the right-hand side. So if I were to multiply both sides by (x + 4)...actually, let me just—let me formally replace this with that.

And up here, it's not so obvious that it's going to be valuable for me to keep this factored form, so I'm just going to keep it in this yellow form, in the expanded out form. So let me just scratch that out for now because once I—well let me multiply by (x - 4).

So if we multiply both sides by (x - 4)—and once again, why am I doing this? It's so I get rid of the (x - 4) in the denominator. (x - 4) and then (x - 4) that and that cancels. That cancels.

And then we are left with, in the numerator, we are left with our (x^2 - 10x + 21) divided by 3 is equal to (x - 5).

Let's see now what we could do, and actually, I could have done it in the last step. I could multiply both sides by three. Multiply both sides—do that in another color just so it sticks out a little bit more.

So I can multiply both sides by three. So, multiply both sides by three on the left-hand side. That and that cancels, and I'll just be left with (x^2 - 10x + 21).

And I don't have a denominator anymore; my denominator is one, so I don't need to write it. It is going to be equal to (3(x - 5)). Let's distribute the three: (3 * x = 3x) and (3 * -5 = -15).

Now I can get this in standard quadratic form by getting all of these terms under the left side. The best way to do that, let's subtract (3x) from the right, but I can't just do it from the right; otherwise, the equality won't hold.

I have to do it from both sides if I want the equality to hold, and I want to get rid of this -5, so I can add 15 to both sides. So let's do that, and what we are left with—scroll down a little bit so we have a little more space.

What we are going to be left with is (x^2 - 13x + 36 = 0). All right, now let's see. We have this quadratic in standard form. How can we solve this?

So first thing, can we factor this? The product of two numbers 36, if I add them, I get -13. They're both going to be negative since they have to have the same sign to get their product to be positive.

And let's see, -9 and -4 seem to do the trick. So, ((x - 9)(x - 4) = 0). Well, that's going to happen if either (x - 9 = 0) or (x - 4 = 0).

Well, add 9 to both sides of this; this happens when (x = 9). Add 4 to both sides of this; this happens when (x = 4). So we could say that the solutions are (x = 4) or (x = 9).

So (x) is equal to 4 or (x) is equal to 9. But we need to be careful because we have to remember in our original expression (x - 4) was a factor of both denominators.

And so if we actually tried to test (x = 4) in the original equation—not one of these intermediary steps—in the original equation, I would end up dividing by zero right over here, and actually, to end up dividing by zero right over there as well.

So the original equations, if I tried to substitute 4, they don't make sense. So this is actually an extraneous solution; it's not going to be a solution to the original equation. The only solution is (x = 9).

More Articles

View All
Safari Live - Day 257 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon and welcome to a sweltering, well, slightly warm Sabi Sands private game reserve in the beautiful South Afri…
David Deutsch: Knowledge Creation and The Human Race, Part 1
My goal would be not to do yet another podcast with David Deutsch; there are plenty of those. I would love to tease out some of the very counter-intuitive learnings, put them down canonically in such a way that future generations can benefit from them, an…
Why Four Cowboys Rode Wild Horses 3,000 Miles Across America (Part 1) | Nat Geo Live
They asked me to, um, start off this speech with a kick. He keeps getting them in and getting them. I mean, J, you cannot eat this stuff! You know what the best thing to do, if you can get in there, just pull it out like a comb. Oh, all right, man, God. …
Survey from Neo Babylonians to Persians | World History | Khan Academy
Let’s now continue with our super-fast journey through history. One thing I want to point out, ‘cause I already touched on it in the previous video, is while we talk about this ancient history, I’m also referring to some stories from the Old Testament, an…
The Stock Market Is About To Flip
What’s down you guys? It’s Graham here. So, as we start off the new year of 2021, we have to talk about something that’s been brought up a lot lately, especially now that the stock market is near its all-time high, and that has to do with our stock marke…
What Makes Gum Chewy? | Ingredients With George Zaidan (Episode 5)
What’s in gum that makes it so chewy? How does this chewy stuff work? And can I make it from scratch? Inside your ingredients, chewing gum is one of the weirdest things we put in our mouths. I mean, think about your mouth for a second. Your teeth are har…