yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example identifying observational study | Study design | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

So we have a type of statistical study described here. I encourage you to pause this video, read it, and see if you can figure out: Is this a sample study? Is it an observational study? Is it an experiment? And then also think about what type of conclusions can you make based on the information in the study.

All right, now let's work on this together. British researchers were interested in the relationship between farmers' approach to their cows and cow's milk yield. They prepared a survey questionnaire regarding the farmers' perception of the cow's mental capacity, the treatment they give to the cows, and the cow's yield. The survey was filled by all the farms in Great Britain. After analyzing their results, they found that on farms where cows were called by name, milk yield was 258 liters higher on average than on farms when this was not the case.

All right, so they're making a connection between two variables. One was whether cows were called by name—whether cows named. All right, whether cows named. And this would be a categorical variable because for any given farmer, it's going to be a yes or no that the cows are named. So they're trying to form a connection between whether the cows are named and milk yield. This would be a quantitative variable because you're measuring it in terms of the number of liters—milk yield.

Whether we are drawing a connection, and they're able to draw some form of a connection, they're saying, “Hey, when the cows were called by name, milk yield was 258 liters higher on average than on farms when this was not the case.”

So first, let's just think about what type of statistical study this is. We could think, okay, is this a sample study? Is this a sample study? Is this an observational study—observational—or is this an experiment? Now, a sample study—an experiment—a sample study you would be trying to estimate a parameter for a broader population. Here, it's not so much that they're estimating the parameter; they're trying to see the connection between two variables.

That brings us to observational study because that's what an observational study is all about: can we draw a connection? Can we draw a positive or negative correlation between variables based on observations? So we've surveyed a population here—the farmers in Great Britain—and we are able to draw some type of connection between these variables. This is clearly an observational study.

Now, this is not an experiment. If there was an experiment, we would take the farmers and we would randomly assign them into one or two groups. In one group, we would say, “Don't name—no naming!” In the other group, we would say, “Name your cows!” Then we would wait some period of time and we will see the average milk production going into the experiment in the no-naming group and the naming group. Next, we would wait some period of time—six months, a year—and then we’ll see the average milk production after either not naming or naming the cows for six months.

So that's not what occurred here. Here, we just did the survey to everybody. We just asked them this question, and we were able to find this connection between whether the cows were named and the actual milk yield. So clearly, not an experiment; this was an observational study.

Now, the next thing is, what can we conclude here? We know when— you know, they’re telling us that when the cows were named, it looks like there was a 258-liter higher yield on average. So the conclusion that we can strictly make here is: well, for farmers in Great Britain, there is a correlation, a positive correlation between whether cows are named and the milk yield. So that we can say for sure.

So let me write that down. For Great Britain farmers, we have a positive correlation between naming cows and milk yield. That's pretty much what we can say here.

Now, some people might be tempted to try to draw causality. You’ll see this all the time where you see these observational studies, and people try to hint, “Maybe there’s a causal relationship here. Maybe the naming is actually what makes the milk yield go up.” Or maybe it's the other way—the cows produce a lot of milk, the farmers like them more, and they want to name them because, like, “Hey, that's my high milk-producing cow.”

So there's a lot of temptation to say, “Naming—that maybe there's a cause out of that; naming causes more milk,” or that maybe more milk causes naming. The farmers really like that cow, so they start naming them. Or whatever it might be. But you can't make this causal relationship based on this observational study. You might have been able to do it with a well-constructed experiment, but not with an observational study.

That's because there could be some confounding variable that is driving both of them. For example, that confounding variable might just be a nice farmer. And, you know, we can define nice in a lot of ways—they're gentle. A nice farmer is more likely to name cows, and a nice farmer is more likely to get a higher yield. The reason why this is a confounding variable is: if you were to control for that—if you just take, “Well, let's just control for nice farmers and then see if naming makes a difference,” it might not make a difference.

If the farmer is, you know, petting the cows and treating them humanely and doing other things, it might not matter whether the farmer names them or not. Likewise, if you take some less nice farmers who, you know, hit their cows and they have really inhumane conditions, it might not make a difference whether they name the cows or not.

So it's very important that you—from the observational studies—you might—if they’re well-constructed—you might be able to say there's a correlation. But you won't be able to make a causal conclusion.

More Articles

View All
Walking Alone in the Wilderness: A Story of Survival (Part 1) | Nat Geo Live
One day I was sitting in Australia, in a desert. The land was red. I was next to an old man. An old Aboriginal man. And after we gaze at the horizon, after a few minutes, he looks at me and he said, “Hey little one. You be careful.” And I look at him a bi…
Dragonfly Wings in Slow Motion - Smarter Every Day 91
[Music] Okay, today we’re going to try to figure out how dragonfly wings work. So Phil has a dragonfly that I caught last night on our night walk, and we have a high-speed camera, and we are set up with a macro lens to try to collect that exact spot. So t…
Understanding lease agreements | Housing | Financial Literacy | Khan Academy
What we’re going to do in this video is look at an example of a lease agreement. This one says “State of Texas Texas Lease Agreement”. You might say, “I don’t live in Texas,” but this is going to be useful for most anywhere. The things we’re going to cove…
Is the Universe Discrete or Continuous?
You said that we went from atoms in the time of Democritus down to nuclei, and from there to protons and neutrons, and then to quarks. It’s particles all the way down. To paraphrase Feynman, we can keep going forever, but it’s not quite forever. Right at …
Homeroom with Sal & David C. Banks - Thursday, September 10
Hi everyone, welcome to our homeroom live stream. Sal here from Khan Academy. Really excited about the conversation we’re about to have with David Banks, who is really one of the leading educators in the country, president of the Eagle Academy Foundation.…
How The Economic Machine Works: Part 5
[Music] All of this impacts the central government because lower incomes and less employment means the government collects fewer taxes. At the same time, it needs to increase its spending because unemployment has risen. Many of the unemployed have inadequ…