yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ionization energy trends | Atomic models and periodicity | High school chemistry | Khan Academy


3m read
·Nov 10, 2024

We're now going to think about ionization energy trends.

What's ionization energy? It's the energy required to remove the highest energy electron from an atom. To think about this, let's look at some data. So right over here is ionization energy plotted against atomic number for elements in the periodic table of elements.

First, we can look group by group. For example, if we look at group one, that's the first column, the leftmost column in the periodic table of elements, starting with hydrogen. Here you can see that as we go down that column, it looks like, generally speaking, our ionization energy is decreasing. For group two, we see a similar pattern; as we go down that second column, our ionization energy, generally speaking, looks like there's a few slight anomalies here, but it looks like it's decreasing.

So as you go down a group, the data seems to imply that ionization energy decreases. It takes less and less energy to remove that highest energy electron. Now let's look at the periods. Remember, the periods are the rows in the periodic table. So if we look at that second row in the periodic table, as we go from left to right, it looks like, generally speaking, ionization energy is increasing. It becomes harder and harder to remove that highest energy electron.

Now, there are some anomalies here; it looks like it briefly decreases, then it increases, briefly decreases again. But the general trend is that, as you go from left to right along that period, energy is increasing. We see the same thing in period 3. Once again, there are some anomalies here, but the trend seems to generally hold. We could also look at period 4 and so on and so forth.

So if we think about ionization energy, what we saw is that as we go down a group right over here, it becomes easier and easier to remove that highest energy electron. In another way to think about it, ionization energy decreases if you go from left to right along a period. Right over here, we saw from the data that ionization energy increases.

Now let's think about why this is. Well, if you look at this trend along, or get an intuition for why this is. If you look at this trend along a group, over here, we already said that you're going to have the same number of valence electrons, but those valence electrons are further and further out. They're at higher and higher energy shells, and so you have a lot more shielding from all of those core electrons.

So that causes some interference. We've already seen that as you go down a group, your atomic radius increases, so you're also going to have less of that effective nuclear force, which is essentially how much the force is between when you consider the nucleus, when you consider the shielding from the electrons in between, and when you think about the distance of those outer electrons.

It makes sense that it's easier and easier to remove the highest energy electron from, say, cesium because it's further out. There are more electrons shielding it from that nucleus, even though there's a lot of protons in that nucleus than, say, in the case of hydrogen.

Now, as you go from left to right along a period, we already talked about the fact that you're adding electrons, but you're either backfilling into a lower energy shell or you're adding at that same outer valence shell. But as you're doing so, as you're going from left to right, you have more and more protons.

So those protons, as you add more and more, you're going to have a stronger positive charge. It's going to pull more and more on those outer electrons. Remember, you have the same number of core electrons because you're just adding to the outer shells right over here.

So it's going to pull harder and harder on them and bring them closer and closer. We saw that atomic radius decreases as you go from left to right, and so it makes sense that ionization energy increases. It's going to be harder and harder to pull off that highest energy electron from, say, bromine than it would be from, say, potassium.

More Articles

View All
Ken Griffin: From Starting a Hedge Fund in His Dorm Room to Billionaire Investor
Which brings me to a quote that describes the ethos of Citadel: “Things may come to those who wait, but only those things left by those who hustle.” Now, here’s what I really love about this quote. Who said this? I went off to Harvard to study economics…
Evidence of evolution: embryology | Evolution | Middle school biology | Khan Academy
Do you ever wish that you had a tail? You could swing your way to school, bake pies more efficiently, and carry an umbrella while keeping your hands free. The funny thing is, you did have a tail once, before you were born. Back then, you were an embryo.…
Why We Should NOT Look For Aliens - The Dark Forest
The Universe is incredibly big and seems full of potential for life, with billions of habitable planets. If an advanced civilization had the technology to travel between the stars, at just 0.1% of the speed of light, it could colonize our galaxy in roughl…
2001 Berkshire Hathaway Annual Meeting (Full Version)
Right, and, uh, Andy, if you’re here, you can stand up. I think the crowd would like to say thanks. [Applause] We have one other special guest who, uh, after, uh, doing an incredible job for, uh, all Berkshire shareholders, and particularly for Charlie an…
Communicate with Users, Build Something They Want - Ryan Hoover of Product Hunt
All right, so maybe we could start with this question from Stuart Powell, and his question is, “What’s your advice for non-technical founders?” As you are a non-technical founder and solo founder, or a cofounder. Prabh is a solo founder but had a founding…
Spectrophotometry and the Beer–Lambert Law | AP Chemistry | Khan Academy
What I want to do in this video is to talk a little bit about spectrophotometry, spectrophotometry, photometry, which sounds fairly sophisticated, but it’s really based on a fairly simple principle. So if I have, let’s say we have two solutions that cont…