yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ionization energy trends | Atomic models and periodicity | High school chemistry | Khan Academy


3m read
·Nov 10, 2024

We're now going to think about ionization energy trends.

What's ionization energy? It's the energy required to remove the highest energy electron from an atom. To think about this, let's look at some data. So right over here is ionization energy plotted against atomic number for elements in the periodic table of elements.

First, we can look group by group. For example, if we look at group one, that's the first column, the leftmost column in the periodic table of elements, starting with hydrogen. Here you can see that as we go down that column, it looks like, generally speaking, our ionization energy is decreasing. For group two, we see a similar pattern; as we go down that second column, our ionization energy, generally speaking, looks like there's a few slight anomalies here, but it looks like it's decreasing.

So as you go down a group, the data seems to imply that ionization energy decreases. It takes less and less energy to remove that highest energy electron. Now let's look at the periods. Remember, the periods are the rows in the periodic table. So if we look at that second row in the periodic table, as we go from left to right, it looks like, generally speaking, ionization energy is increasing. It becomes harder and harder to remove that highest energy electron.

Now, there are some anomalies here; it looks like it briefly decreases, then it increases, briefly decreases again. But the general trend is that, as you go from left to right along that period, energy is increasing. We see the same thing in period 3. Once again, there are some anomalies here, but the trend seems to generally hold. We could also look at period 4 and so on and so forth.

So if we think about ionization energy, what we saw is that as we go down a group right over here, it becomes easier and easier to remove that highest energy electron. In another way to think about it, ionization energy decreases if you go from left to right along a period. Right over here, we saw from the data that ionization energy increases.

Now let's think about why this is. Well, if you look at this trend along, or get an intuition for why this is. If you look at this trend along a group, over here, we already said that you're going to have the same number of valence electrons, but those valence electrons are further and further out. They're at higher and higher energy shells, and so you have a lot more shielding from all of those core electrons.

So that causes some interference. We've already seen that as you go down a group, your atomic radius increases, so you're also going to have less of that effective nuclear force, which is essentially how much the force is between when you consider the nucleus, when you consider the shielding from the electrons in between, and when you think about the distance of those outer electrons.

It makes sense that it's easier and easier to remove the highest energy electron from, say, cesium because it's further out. There are more electrons shielding it from that nucleus, even though there's a lot of protons in that nucleus than, say, in the case of hydrogen.

Now, as you go from left to right along a period, we already talked about the fact that you're adding electrons, but you're either backfilling into a lower energy shell or you're adding at that same outer valence shell. But as you're doing so, as you're going from left to right, you have more and more protons.

So those protons, as you add more and more, you're going to have a stronger positive charge. It's going to pull more and more on those outer electrons. Remember, you have the same number of core electrons because you're just adding to the outer shells right over here.

So it's going to pull harder and harder on them and bring them closer and closer. We saw that atomic radius decreases as you go from left to right, and so it makes sense that ionization energy increases. It's going to be harder and harder to pull off that highest energy electron from, say, bromine than it would be from, say, potassium.

More Articles

View All
Gnarly in Pink: These Skateboarding Girls Shred With the Boys | Short Film Showcase
Kang-cook, sure! I don’t date anymore. I’m using a speckles messed up. Well, I got a lot without putting my nails little, saying I’m gonna use glitter. I mean, I’m her blue purple a skater, so I could use that. This is purple. Yeah, next! Our next, I wan…
trying to get my life together vlog | Med School Diaries
Oh, these fake sleeping scenes! Oh, let me pretend that I woke up right now. I’ve been feeling so… I’ve been feeling [Music]. No friends of mine, good morning! It’s actually currently 1 PM. Our professor canceled all of our lectures today, so I didn’t hav…
Most People Don't Know How Bikes Work
Most people don’t know how bicycles actually work. [Off screen] Let’s try it again. So we modified this bike to prove it. This video was sponsored by KiwiCo. More about them at the end of the show. When you’re riding a bike and you want to turn left, …
Mohnish Pabrai: How to Find and Analyze an Investment (2021)
I put about 10% of the fund’s assets into Frontline, and in a few months, shipping rates started to go up. It went up to like $10 or $11 a share. I had a very nice gain in a relatively short period of time, and I exited Frontline, patted myself on the bac…
15 Things You Envy In Other People
Nothing says I have no confidence in myself more than envying other people and being obvious about it. They seem to have it all while you’re here, stuck yet again. Well, today we’re talking about 15 things you envy in other people, so you can start doing …
Is Time Travel Possible?: Mind Blow (Special Edition)
John tier claims to be a time traveler from the year 2036, and his time machine kind of looks like a certain DeLorean whose parts you can actually buy. Vauce Kevin here; this is Mind Blow: Time Travel Edition. This is a real time machine, sort of. Dr. Ron…