yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving system with elimination | Algebra | Khan Academy


4m read
·Nov 11, 2024

So we have a system of two linear equations here. This first equation, (x - 4y = 8), and the second equation, (-x + 3y = 11). Now what we're going to do is find an (x) and (y) pair that satisfies both of these equations. That's what solving the system actually means. As you might already have seen, there's a bunch of (x) and (y) pairs that satisfy this first equation. In fact, if you were to graph them, they would form a line.

There are a bunch of other (x) and (y) pairs that satisfy this other equation, the second equation, and if you were to graph them, it would form another line. So, if you find the (x) and (y) pair that satisfies both, that would be the intersection of the lines. So, let's do that.

Actually, I'm just going to rewrite the first equation over here, so I'm going to write (x - 4y = -18). We've already seen in algebra that as long as we do the same thing to both sides of the equation, we can maintain our equality. So, what if we were to add, and our goal here is to eliminate one of the variables. Therefore, we have one equation with one unknown.

So, what if we were to add (x + 3y) to the left-hand side here? So (x + 3y) well, that looks pretty good because an (x) and a (-x) are going to cancel out. We are going to be left with (-4y + 3y); well, that's just going to be (y).

So, by adding the left-hand side of this bottom equation to the left-hand side of the top equation, we were able to cancel out the (x)s. We had (x) and we had a (-x); that was very nice for us. So, what do we do on the right-hand side? We've already said that we have to add the same thing to both sides of an equation.

We might be tempted to just say, well, if I have to add the same thing to both sides, well, maybe I have to add (x + 3y) to that side. But that's not going to help us much. We're going to have (8 - (x + 3y)), and we would have introduced an (x) on the right-hand side of the equation.

But what if we could add something that's equivalent to (x + 3y) that does not introduce the (x) variable? Well, we know that the number (11) is equivalent to (x + 3y). How do we know that? Well, that second equation tells us that.

So once again, all I'm doing is I'm adding the same thing to both sides of that top equation. On the left, I'm expressing it as (x + 3y), but the second equation tells us that that (x + 3y) is going to be equal to (11). It's introducing that second constraint, and so let's add (11) to the right-hand side, which is, once again, I know I keep repeating, it's the same thing as (x + 3y).

So (8 + 11) is (19), and since we added the same thing to both sides, the equality still holds. We get (-y = -19) or divide both sides by (-1) or multiply both sides by (-1). So, multiply both sides by (-1), we get (y = 19).

So we have the (y) coordinate of the (xy) pair that satisfies both of these. Now how do we find the (x)? Well, we can just substitute this (y = 19) into either one of these. When (y = 19), we should get the same (x) regardless of which equation we use.

So let's use the top equation. We know that (x - 4 \times 19 = 8). So, (4 \times 19 = 76). So let's see. To solve for (x), I could add (76) to both sides.

So, add (76) to both sides on the left-hand side; (−76) and (+76) cancel out. I'm just left with (x), and on the right-hand side, I get (8 + 76) which is (84). So there you have it. I have the (xy) pairs or the (xy) pair that satisfies both: (x = 84) and (y = 19).

I could write it here as coordinates: ((84, 19)). Notice what I just did here. I encourage you to substitute (y = 19) here, and you'll also get (x) as (84). Either way, you would have come to (x = 84).

And to visualize what is going on here, let's visualize it really fast. Let me draw some coordinate axes. Whoops, I meant to draw a straighter line than that. All right, there you go. So let's say that is our (y) axis and that is our (x) axis.

Then let's see. The top line is going to look something like this. It's going to look something like this. And then that bottom equation is going to look something like that.

Let me draw a little bit nicer than that. It's going to look something like this, something like that. Let me draw that bottom one here so you see the point of intersection.

The point of intersection right over here is an (xy) pair that satisfies both of these equations, and that we just saw happens when (x = 84) and (y = 19). Once again, this white line is all the (xy) pairs that satisfy the top equation. This orange line represents all the (xy) pairs that satisfy the orange equation.

Where they intersect, that point is on both lines and satisfies both equations. Once again, take (x = 84), (y = 19); substitute it back into either one of these, and you will see that it holds.

More Articles

View All
Why Most People Will Never Be Able To Retire
Do you dream of the day when you can finally put your feet up, relax, and enjoy your golden years? Do you see yourself sitting on a comfy chair by the fireplace, reading stories to your grandkids? Well, tough luck, because most people in this generation w…
Reid Hoffman at Startup School SV 2016
[Applause] So, uh, up next needs no introduction. I’ll give a very quick one. Reed Hoffman, uh, has been in—yeah, please do—round of applause! You know what it sounds like; you all know who he is. I’ll skip the introduction. All right, for the first que…
Five Firsts for Mars InSight
This Monday, November 26, around noon Pacific Time, NASA will attempt to land a spacecraft called InSight on Mars. While a lot of previous missions have looked for life, evidence of past life, water, liquid water, and so on, this is the first mission dedi…
Organization of multicellular organisms | High school biology | Khan Academy
In this video, we’re going to take a journey in life and we’re going to start with the smallest scale of life that is indisputably life, and that is the cell. Now, the reason why I qualified that a little bit is some people debate whether viruses are livi…
How to Get Ahead of 99% of People
We all want better for ourselves. Whether it’s a bigger house, nicer car, higher salary, thriving business, or more recognition, we all want things we don’t have. Most of us spend the majority of our lives chasing these things. Success looks different to …
What Is Intelligence? Where Does it Begin?
Humans are proud of a lot of things, from particle accelerators to poetry to Pokemon. All of them made possible because of something humans value extremely highly: Intelligence. We think of intelligence as a trait like height or strength, but when we try …