yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting expressions with exponents challenge 2 | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

So we have an expression here that has a bunch of exponents in it. It seems kind of complicated, and what I want you to do, like always, is pause this video and see if you can work through this yourself. Essentially, working through this means simplifying it on your own before we work through this together.

All right, now let's work through this together. So we have this expression times this expression, but then this expression is raised to an exponent. So, order of operations would tell me, "Hey, let's do the exponent first before we actually multiply things."

And how do we simplify this? We have a bunch of stuff that is raised to an exponent. Well, we've seen that exponent property before. If I have A times B, and all of that is raised to the n-th power, that's the same thing as A to the n times B to the n.

So, let's rewrite this part like that. I'll just rewrite the first part, so we have 4A^3B. Then, I will do this part in blue just to make it look a little different. So, I'm raising all of this to the 1/2 power, so this is times 81 to the 1/2 power times A^2 to the 1/2 power times B to the E to the 1/2 power.

Let me write a little bit neater. All right, to the 1/2 power. And now what do we do with all of this? Well, actually, before we even get there, what's 81 to the 1/2 power? Well, that's what number times itself is 81. That, of course, is going to be 9. So we got that simplified.

What's A^2 to the 1/2 power? Well, there, we need to remind ourselves that, in purple, if I have A to the n and then I were to raise that to the m, that is equal to A to the n times m power. So we're just going to multiply these exponents here.

So, what is 2 times 1/2? Well, that's just going to be 1. So, actually, let me just rewrite all of this. It is going to be 4A^3B and then times I have 9. And then in purple, I have A^2 to the 2, which is A^(2 times 1/2). 2 times 1/2 is 1, so this is A to the first power. A to the first power is the same thing as just an A.

Then we will do that again right over here, B to the E and then I raise that to the 1/2, so I could just multiply these two exponents. 8 times 1/2 is 4, so this is the same thing as B to the 4th power. B times B to the 4th power, and I'll close my parenthesis.

Well, now I have a bunch of things being multiplied times a bunch of other things being multiplied. So one way to think about it is I could just remove the parentheses if I like. Why don't I do that? I'll just—oops, I thought I was erasing—let me just remove the parentheses if I like.

Now I'm just multiplying a bunch of things. It might not be written in the neatest way possible, but we can. I'll put a little multiplication here and if I'm just multiplying a bunch of things, I could change the order of that multiplication. So I'd like to multiply my coefficients first.

So, I'm going to have 4 times 9, which is going to be 36. And then that's going to be times—let me do this in the salmon color—so A^3 times A. Actually, let me just write that. I don't want to skip too many steps, so times A^3 times A.

And then last but not least, let's get to—we have B times B to the 4th, times B times B to the 4th. And what I'm doing here is I'm just changing the order of multiplication, so I'm multiplying parts of the expression that have the same base because now I can use more exponent properties.

We know, or we have seen before, if I have A to the n times A to the m, this is equal to A to the n plus m. Same base, then I can add the exponents. So this right over here is going to be A to the 3 plus 1 power, right over here.

So all of this is A to the 3 plus 1, and all of this—this is B to the 1. That's the same thing as B, so this is going to be the same thing as B to the 1 plus 4 power. And we are in the home stretch.

This is all going to simplify to 36 times A to the 4th power, A^4, and then B to the 1 plus 4 power is B to the 5th. And we are done.

More Articles

View All
How can I keep all my smart devices secure?
So Mark, so far we’ve talked a lot about device security, and when we talk about devices, at least in my mind, I imagine my phone, I imagine my laptop, a tablet, maybe a smart watch. But there’s actually a much broader universe of devices—smart devices, y…
The Market Is About To Drop - Again
What’s up, grandma’s guys? Here, so throughout the last few days, there’s been a new topic that’s begun to make its way around the internet, and we got to break this down because it’s from the renowned investor Ray Dalio, with some rather serious claims t…
Epic Mountain Climb Proves “Exploration Is Not Dead” | Exposure
This was old school, real turn of the century Adventure. It was everything that exploration and Adventure is and can be, and those elements that we’ve lost along the way. We wanted an anti-Everest, and we really got an anti-Everest. I mean, Mar, the north…
Prepositions of space | The parts of speech | Grammar | Khan Academy
Hello, Garans. So we had said previously that prepositions, uh, express relationships between two ideas, right? And we can do that either in time or in space or in other ways. But today I want to talk about prepositions in [Music] space because this is a…
Maintain | Vocabulary | Khan Academy
Ahoy word Smiths! Hold fast because this word is about keeping it steady. As she goes, “maintain” is the featured word. Oh, I maintain a steady course. Word Smith’s maintain, it’s a verb; it means to keep something the same, to provide support for someth…
My thoughts on money and relationships
What’s up you guys? It’s Graham here. So, a little over a year ago, I posted a video about why I was single and, uh, well, lo and behold, weird timing, but right after I posted the video, I met my girlfriend, Macy. Since then, I’ve largely shut the door o…