yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting expressions with exponents challenge 1 | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

So we have this pretty complicated, some would say hairy, expression right over here. What I want you to do is pause this video and see if you can simplify this based on what you know about exponent rules.

All right, now let's do this together. There's many ways you could approach this, but what my brain wants to do is first try to simplify this part right over here. I have a bunch of stuff in here to an exponent power, and one way to think about that is if I have, let's say, A * B to the let's call it C power, this is the same thing as A to the C times B to the C power. So we could do that with this part right over here.

Actually, let me just simplify this so I don't have to keep rewriting things. So this can be rewritten as five M—or let me be careful—this is going to be 5^2 A R times M to the -13 2 A R times N^2, which is the same thing as 25.

Now, if I raise something to an exponent and then raise that to an exponent, there’s another exponent property here. If I have A to the B and then I raise that to the C, then I multiply the exponents; this is equal to A to the B times C power. So here we would multiply these exponents: 25 M^2 * -1/3 is -23, and then, of course, we have this N^2 right over here.

So actually, let me just rewrite everything so we don't lose too much track. So we have 75—I wrote M—75 M to the 1/3 N to the -7, and then I simplified the bottom part. I'll do that same color as 25 M to the -23 N^2.

Now, some of y'all might immediately be able to skip some steps here, but I'll try to make it very, very explicit. What I'm going to do is rewrite this expression as the product of fractions or as a product of rational expressions. So I could rewrite this as being equal to 75 / 25, which I think you know what that is, but I'll just write it like that, times—and then we’ll worry about these right over here—times M to the 1/3 over M to the -23, and then times—in blue—N to the -7 over N^2.

Now, 75 over 25 we know what that is; that’s going to be equal to 3. But how do we simplify this right over here? Well, here we can remind ourselves of another exponent property. If I have, let’s call it A, A to the B over C to the D actually has to have the same base over A to the C. This is going to be the same thing as A to the B minus C power.

So I can rewrite all of this business. I have my 3 here: 3 times M to the 1/3, and then I'm going to subtract this exponent. We have to be very careful; we're subtracting a negative, so we're subtracting -23. That's all that exponent for M, and then we're going to have times N to the -7 power minus 2.

And so now we are in the home stretch. This is going to be equal to 3 * M to the—what’s 1/3 - -2/3? Well, that’s the same thing as 1/3 + 2/3, which is just 3/3, which is just 1. So this is just M to the first power, which is the same thing as just M, and then that is going to be times -7 - 2; that is -9. So times N to the -9th power, and we are done.

That is strangely satisfying to take something that hairy and make it, I guess, less hairy. Now, some folks might not like having a negative 9 exponent here; they might want only positive exponents. So you could actually rewrite this, and we could debate whether it's actually simpler or less simple.

But we also know the exponent properties that if I have A to the -N, that is the same thing as 1 over A to the N. So based on that, I could also rewrite this as 3—we do the same color as that—3 as 3 times M, and then instead of saying times N to the 9, we could say that is over N to the 9th. So that's another way to rewrite that expression.

More Articles

View All
Teaching Math with Khanmigo
Meet Conmigo, your aid-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many exciting features that support teachers, and this video will showcase ways you can use Kigo to create course-specific mathem…
Sonic Postcards from The Appian Way | Podcast | Overheard at National Geographic
That was our first experience with an unpassable section of the Appian Way. We were with Ricardo at that point. Ricardo told us the path is not clear, so probably we have to cross the river. But let’s see. Writer Nina Strolik and photographer Andrea Fraz…
Collecting Ice for Cocktails | Restaurants at the End of the World | National Geographic
Oh my God! So what are we getting? We’re getting ice. We’re getting…the most obvious choice. Kill the engine, brother. If you’re really quiet, and you listen through the waves, you hear all the pops and cracks? Mm hmm. This is the glacier ice expansion, …
The Painful Task of Resetting the U.S. Economy
In the past two weeks, serious difficulties at a small number of banks have emerged. Isolated banking problems, if left unaddressed, can undermine confidence in healthy banks and threaten the ability of the banking system as a whole. That is why, in respo…
Elad Gil Shares Advice from the High Growth Handbook, a Guide to Scaling Startups
The first question I wanted to ask you: the book is called High-Growth Handbook, not the High-Growth Hanjo, just High-Growth Handbook. Given that so few companies ever make it to high growth, you know, thousands of employees, why should an average entrepr…
Information Overload is Killing Us
Pollution. When you hear that word, what do you think of? Perhaps dangerous gases are being emitted into our atmosphere, garbage floating around the ocean, sick animals due to toxic food. But there’s another pollutant lurking in our society: an invisible …