yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting expressions with exponents challenge 1 | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

So we have this pretty complicated, some would say hairy, expression right over here. What I want you to do is pause this video and see if you can simplify this based on what you know about exponent rules.

All right, now let's do this together. There's many ways you could approach this, but what my brain wants to do is first try to simplify this part right over here. I have a bunch of stuff in here to an exponent power, and one way to think about that is if I have, let's say, A * B to the let's call it C power, this is the same thing as A to the C times B to the C power. So we could do that with this part right over here.

Actually, let me just simplify this so I don't have to keep rewriting things. So this can be rewritten as five M—or let me be careful—this is going to be 5^2 A R times M to the -13 2 A R times N^2, which is the same thing as 25.

Now, if I raise something to an exponent and then raise that to an exponent, there’s another exponent property here. If I have A to the B and then I raise that to the C, then I multiply the exponents; this is equal to A to the B times C power. So here we would multiply these exponents: 25 M^2 * -1/3 is -23, and then, of course, we have this N^2 right over here.

So actually, let me just rewrite everything so we don't lose too much track. So we have 75—I wrote M—75 M to the 1/3 N to the -7, and then I simplified the bottom part. I'll do that same color as 25 M to the -23 N^2.

Now, some of y'all might immediately be able to skip some steps here, but I'll try to make it very, very explicit. What I'm going to do is rewrite this expression as the product of fractions or as a product of rational expressions. So I could rewrite this as being equal to 75 / 25, which I think you know what that is, but I'll just write it like that, times—and then we’ll worry about these right over here—times M to the 1/3 over M to the -23, and then times—in blue—N to the -7 over N^2.

Now, 75 over 25 we know what that is; that’s going to be equal to 3. But how do we simplify this right over here? Well, here we can remind ourselves of another exponent property. If I have, let’s call it A, A to the B over C to the D actually has to have the same base over A to the C. This is going to be the same thing as A to the B minus C power.

So I can rewrite all of this business. I have my 3 here: 3 times M to the 1/3, and then I'm going to subtract this exponent. We have to be very careful; we're subtracting a negative, so we're subtracting -23. That's all that exponent for M, and then we're going to have times N to the -7 power minus 2.

And so now we are in the home stretch. This is going to be equal to 3 * M to the—what’s 1/3 - -2/3? Well, that’s the same thing as 1/3 + 2/3, which is just 3/3, which is just 1. So this is just M to the first power, which is the same thing as just M, and then that is going to be times -7 - 2; that is -9. So times N to the -9th power, and we are done.

That is strangely satisfying to take something that hairy and make it, I guess, less hairy. Now, some folks might not like having a negative 9 exponent here; they might want only positive exponents. So you could actually rewrite this, and we could debate whether it's actually simpler or less simple.

But we also know the exponent properties that if I have A to the -N, that is the same thing as 1 over A to the N. So based on that, I could also rewrite this as 3—we do the same color as that—3 as 3 times M, and then instead of saying times N to the 9, we could say that is over N to the 9th. So that's another way to rewrite that expression.

More Articles

View All
Miyamoto Musashi | A Life of Ultimate Focus
Miyamoto Musashi is one of the most legendary samurai and famed as Japan’s greatest swordsman—undefeated in more than sixty duels. After he escaped death during the Battle of Sekigahara, Musashi became a ronin. Aside from being a swordsman, he was also a …
Mustache Maintenance - Fan Questions | StarTalk
[Music] I’ve never in my life shaved my mustache. I’ve trimmed it, but I’ve never—a razor has never touched my upper lip in my entire life. So, two things are true: there’s no hair growth between like every pair of my thing and the bottom of my nose—I do…
What is Morality?
If I steal from the rich and feed to the poor, is that good or bad? If I drive over the speed limit to get my sick child in the hospital, is that good or is that bad? What is good and what is bad? What is morality, and do you as a person have morals? Mor…
Warren Buffett is GETTING OUT!
Hey guys, welcome back to the channel! In this video, we’re going to be looking at everything that Warren Buffett bought and sold in the last quarter. Of course, the 13F’s are out, so now we actually get to have a look at all of the stock market moves tha…
Ian Hogarth
Now we’re going to move on to the next speaker, which is Ian Hogarth of Sonick. He’s the co-founder and CEO. Y Combinator funded Sonick in 2007, and a fun fact, it’s actually through Ian that I found out about Y Combinator all that time ago. So if you don…
Charlie Munger: 100 Years of Wisdom Summed up in 20 Minutes
And I’ve catalogued the inanities on structures in my head, and it’s been a wonderful thing to do. If you stop to think about it, how many unhappy collectors do you know? Whether they collect silver, or mistresses, or you know… I thought I would speak ton…