yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ordering fractions | Math | 4th grade | Khan Academy


3m read
·Nov 11, 2024

Order the fractions from least to greatest.

So we have three fractions and we want to decide which one is the smallest, which one's in the middle, and which is the greatest.

One thing we could do is look at the fractions, think about what they mean, and then estimate.

7/10, let's say maybe that could represent seven of your 10 friends are wearing blue jeans. Well, that's most. Most of your friends are wearing blue jeans.

Then for 1/3, we could say one of your three teachers wears glasses. Well, that's not most. If only one of the three wears glasses, that's not most of the group.

So here's a fraction that represents most of the group; here's one that doesn't. So the most is probably greater.

These two we could compare by estimating and see that this one, 7/10, is probably greater than 1/3.

But then we get over here to 5/6. Well, again, that's most of the group, but is this most of the group greater than the 7/10's most of the group? That gets a lot trickier.

So what we can do is we can try to change these fractions to make them easier to compare. We don't have to compare 10ths to thirds to sixths because those are all different sizes, different size groups, different size pieces. That's tricky to compare.

So we want to change these to be the same size. We need some number, a multiple of 10, 3, and 6. Something we can multiply 10, 3, and 6 by to get a new denominator that will work for all of the fractions.

One way I like to figure this out is I look at the biggest denominator, which is 10, and I think of its multiples. The first multiple is 10; 10 * 1 is 10.

Can we change thirds and sixths to have 10 as a denominator? Is there any whole number you can multiply 3 times to get 10? There's not, so we need to keep going. 10 doesn't work.

The next multiple of 10 is 10 * 2, which is 20. Again, 3 and 6. Is there a whole number we can multiply them by to get 20? Again, no, so 20 doesn't work.

How about 30? Let's see, for 3, we can multiply 3 * 10 to get 30, so 30 works for 3. How about 6? 6 * 5 = 30, so yes, 30 can work to be our common denominator.

30ths. 30 is a multiple of 10, 3, and 6, so let's start converting our fractions to have denominators of 30.

We'll start with 7/10, and we want it to have a denominator of 30. So what do we need to multiply? 10 * 3 is 30.

We always multiply the numerator and denominator by the same number, so 7 * 3 is 21. So, 7/10 is equal to 21/30.

These are equal. We've just changed the size of the group. We've changed the denominator so that they will be easier to compare, but we've not changed what portion of the group we're representing.

7 out of 10 is the same portion as 21 out of 30.

And then let's keep going with 1/3. Again, we want a denominator of 30, so this time we'll multiply 3 * 10 to get 30. Again, numerator also times 10; 1 * 10 is 10.

10 out of 30 is the same as 1/3. If you have 10 of the 30 people, again we'll use the wear glasses example, or 1/3; that is the same size of the group, the same portion.

Finally, 5/6. What do we need to multiply here to get 30? 6 * 5 is 30, so we multiply the numerator by 5, and 5 * 5 is 25.

So now instead of these original fractions that were tricky to compare, we have much easier numbers to compare. We have 21/30, 10/30, and 25/30.

So in this case, the pieces are all 30ths; they're all groups of 30. So this is much easier to compare.

We can simply look at the numerators to see what portion of those 30 the fraction represents.

So the first, 7/10, is the same as 21 out of 30, whereas 1/3 is 10 out of 30.

Well, clearly, 21 out of 30 is a larger portion of the group than 10 out of 30, so we were right when we estimated up here that 7/10 is larger than 1/3.

But then the trickier one over here, now we can see much more clearly: 25 out of 30 is the greatest portion of the group. 25 is more than the 10 or the 21.

So we can list these now from least to greatest. The least, the smallest, is 10/30, which again remember is equal to 1/3, so we can put 1/3 as least and we can cross that off.

Next, it's either 21 out of 30 or 25. 21 is less; that represented 7/10, so we can say 7/10 because 21/30 equals 7/10.

And finally, that leaves us with 25/30, which is equivalent to 5/6.

So from least to greatest, our fractions are 1/3, 7/10, and then 5/6.

More Articles

View All
Intro to SelfAuthoring
I’m Dr. Jordan B. Peterson, a psychology professor at the University of Toronto in Canada. I’m going to tell you the story behind the Self Authoring Suite website. A few years ago, I realized that the students in my classes had written essays on all sort…
Interpret quadratic models: Factored form | Algebra I | Khan Academy
We’re told that Rodrigo watches a helicopter take off from a platform. The height of the helicopter in meters above the ground, t minutes after takeoff, is modeled by… and we see this function right over here. Rodrigo wants to know when the helicopter wil…
Life On the Watchlist | Explorer
The watch list, also known as the terrorist screening database, is used by U.S. intelligence agencies to nominate people as known or suspected terrorists. Over the past 15 years, the list has grown from a few thousand to more than 1 million names. But the…
Dividing polynomials by linear expressions: missing term | Algebra 2 | Khan Academy
In front of us, we have another screenshot from Khan Academy, and I’ve modified a little bit so I have a little bit of extra space. It says, “Divide the polynomials. The form of your answer should either be a straight-up polynomial or a polynomial plus th…
How To Be Alone | 4 Healthy Ways
He who sits alone, sleeps alone, and walks alone, who is strenuous and subdues himself alone, will find delight in the solitude of the forest. - The Buddha. Some people avoid solitude like the plague. Others love being alone and thrive best in solitude w…
How to Become More Disciplined - A Quick Guide
Ask yourself this question: Are you someone who relies on motivation or discipline to get things done? Maybe you don’t know the answer to that question, or maybe your answer is, “Well, a little bit of both.” Well, in this video, I’m going to talk about wh…