yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
I tried Emma Chamberlain's workout routine for a week
Hi! I’m Rudy. Welcome to, or welcome back to my channel! I tried Emma Chamberlain’s workout routine for a week, and it was insane. Just at the beginning, I just can’t do that, and even now I really cannot do exactly what she does. Actually, I’m gonna sho…
Khan Academy Best Practices for Social Studies
Hi everyone, this is Jeremy Schieffen at Khan Academy. Thanks so much for joining us this afternoon or this evening. We’re thrilled to have you online with Aaron Hill, an awesome social studies educator, AP expert, and general Khan Academy guru. Um, as y…
Electrolytic cells | Applications of thermodynamics | AP Chemistry | Khan Academy
Electrolytic cells use an electric current to drive a thermodynamically unfavorable reaction. Before we look at a diagram of an electrolytic cell, let’s look at the half reactions that will occur in the cell. In one half reaction, liquid sodium ions reac…
Success is a 5 Step Process
If you want to succeed, understand the five-step process. What I mean by the five-step process is first, you need to know your goals. That means you need to prioritize and find out what do you really want and what are you going after. On the journey to t…
Shape properties after a sequence of transformations
In past videos, we’ve thought about whether segment lengths or angle measures are preserved with a transformation. What we’re now going to think about is what is preserved with a sequence of transformations, and in particular, we’re going to think about a…
Subtracting integers find the missing value | 7th grade | Khan Academy
So if I were to ask you if I were to tell you that negative 3 minus blank is equal to negative 4, can you pause this video and figure out what this blank is? All right, now let’s do this together, and I’m going to do this by drawing out a number line bec…