yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
How They Caught The Golden State Killer
This video includes a discussion of serious crimes, which may be disturbing for some viewers, so I wanted to let you know that upfront. But I think it’s necessary to talk about these crimes in some detail for reasons that will become apparent. In the smal…
Examples thinking about multiplying even and odd numbers
We are told Liam multiplies two numbers and gets an even product. What could be true about the numbers Liam multiplied? It says choose two answers, so pause this video and see if you can figure out which two of these could be true. All right, now let’s d…
Gilded Age versus Silicon Valley | GDP: Measuring national income | Macroeconomics | Khan Academy
Let’s give ourselves a little bit more food for thought on this labor versus capital question. So, like we’ve mentioned many, many, many times, in order to produce anything, you need a little bit of both. Or you maybe need a lot of both. You need labor, a…
The van der Waals equation | Khan Academy
We have so far spent many videos talking about the ideal gas law: that pressure times volume is equal to the number of moles times the ideal gas constant times temperature measured in Kelvin. What we’re going to do in this video is attempt to modify the i…
How Much Equity to Give Your Cofounder - Michael Seibel
How much equity to give your co-founders? This is a problem and a question that a lot of people have written about, and you can see a lot of varied advice online. My perspective is that most founders are missing a couple key points when divvying up their …
Introduction to cilia, flagella and pseudopodia | Cells | High school biology | Khan Academy
The goal of this video is to appreciate some of the structures that you see, even in unicellular organisms. So, this right over here is a picture of the amoeba Chaos carolinensis, and what you see here is a projection coming off from the main part of the …