yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
Peopling the Americas
Hey Becca. Hey Kim. All right, so we’re talking about how people got to the Americas today. So when did people first arrive in North America? Was Columbus the first one? So no, he was not. You know, back in the day, people believed that actually, pre-Col…
15 Ways Your Worldview Changes As You Get Richer
The wealthier you get, the more your perspective of the world changes. You see it with different eyes for what the world really is and how it really works. Welcome to Alux! Up to a certain point, money 100% brings happiness and safety. But after that poin…
Constitutional compromises: The Electoral College | US government and civics | Khan Academy
In this series of videos about the Constitution, we’ve been discussing all the elements of balance and compromise that appear in the Constitution. The balance between large states and small states and between the different branches of government. But in t…
The Columbian Exchange
Although we tend to think about Christopher Columbus’s first voyage in 1492 transforming the history of the Americas, it actually transformed a great deal more than that. In this video, I want to talk about the larger world historical process that Columbu…
2015 AP Biology free response 7
Smell perception in mammals involves the interactions of airborne odorant molecules from the environment with receptor proteins on the olfactory neurons in the nasal cavity. The binding of odorant molecules to the receptor proteins triggers action potenti…
Why you should always do business face to face and not over the phone!
I don’t care if I get in front of somebody for 20 minutes; I could have talked to him for 5 years on the telephone, and that 20 minutes face to face is going to change my relationship dynamic over any kind of telephone call. Being in front of the customer…