yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
Dung to the Rescue | Primal Survivor
[Music] Now I need to make a fire before it gets dark. I’m using a traditional method called a hand drill. This relies on friction between a soft wood base and a hard straight stick. I found that sticks that are hollow inside trap heat better, and it mak…
JUST BOUGHT MY 6TH PROPERTY - HOUSE TOUR!!
What’s up you guys, it’s Graham here! So, really exciting news! As of a few hours ago, I am now the official owner of this new duplex here in Los Angeles. I actually just got the keys, so I have not seen it since the owners moved out. I’m hoping the condi…
Craziest Xbox Game? 10 MORE WTFs
Vsauce Michael here, coming via webcam in Kansas. I’m headed back to NYC tomorrow, but I wanted to send you 10 quick Vsauce video game wtf’s. I was inspired by ACJ 2010’s comment about some snow humpers in Doodle Jump. I couldn’t find video confirming thi…
Competition is for Losers with Peter Thiel (How to Start a Startup 2014: 5)
All right, good afternoon. Uh, today’s speaker is Peter Thiel. Peter was the founder of PayPal and Palantir and Founders Fund, and has invested in, uh, most of the tech companies in Silicon Valley. And he’s going to talk about strategy and competition. Th…
Momentum collision graphs
A cart of mass m moving rightward at speed 2v hits a slower moving cart of mass m moving rightward at speed v. When the carts collide, they hook together. There’s friction between the track and carts and between the moving parts of the carts. Which of the…
Secant line with arbitrary difference | Derivatives introduction | AP Calculus AB | Khan Academy
A secant line intersects the curve ( y ) equal to the natural log of ( x ) at two points with ( x ) coordinates ( 2 ) and ( 2 + h ). What is the slope of the secant line? Well, they’re giving us two points on this line. It might not be immediately obviou…