yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
What Makes Sugar-Free Gum Sweet? | Ingredients With George Zaidan (Episode 11)
Takes a lot more than just sugar to make gum sweet, so can I make my own gum sweetener from scratch without sugar? Hit the stuff inside your stuff. Ingredients; the ingredients in this popular gum are, and the ones responsible for flavor are. Now let’s d…
Warren Buffett: How Smart Investors Easily Identify Terrible Stocks
In the end the better mouse trap usually wins but but the people with the second or third best mous trap will will try to keep that from happening. I the ones you name I don’t know anything about I mean I know what they do but I don’t I don’t know they sp…
Saving Orangutans in Sumatra's Disappearing Rain Forests | Nat Geo Live
Panut: In Sumatra, the Leuser Ecosystem is one of the largest and most intact tropical rainforests left in Southeast Asia. It is the only place in the world where you have Sumatran tigers, Sumatran rhinos, Sumatran elephants, and orangutans living togethe…
Activities to Build Creative Confidence
Hi Adobe Creative Educators! Welcome back to our Adobe Creative Educator show. We’re very excited to be here with you today and have some very incredible guests that are joining us. But if you’re just joining us from Facebook, YouTube, or Twitter, please …
Life is a Game: This is how you win it
Most people you know are not aware that life is a game meant to be won. That’s why you see them feeling stuck, tired, and bored. Well, by the end of this video, not only will you understand the purpose of the game, but the rules and how to win it too. Li…
A Calm Mind, a Fit Body, a House Full of Love
The last tweet on the topic of working for the long term is that when you’re finally wealthy, you’ll realize that it wasn’t what you were seeking in the first place. But that’s for another day; that’s a multi-hour topic in and of itself. First of all, I …