yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
High Speed Video of Pistols Underwater - Smarter Every Day 19
Hey, it’s me Destin. Welcome to this week in Smarter Every Day. Today, we’re gonna try to figure something out that I’ve always wondered. What happens when you shoot a pistol underwater? I think revolvers are gonna act a little different than semi-automat…
Earth Is Running Out of Space
7.7 billion. That’s the estimated number of people in the world today. To put it in perspective, that’s 110,000 NFL stadiums filled to capacity. If each of us were to hold hands, we would surround the entire circumference of the earth 345 times. The conce…
How To Get Rich According To Steve Jobs
There are a million ways to make a million dollars, and in this video, we’re looking at one of them. If Steve Jobs were alive today, he would be among the top 10 richest people on the planet. Jobs was known to be a non-conformist, a man focused on buildin…
Tech startups live and die by their speed of shipping software.
I was the single non-technical person on a four-person co-founding team at Justin TV and Twitch. And like, I’ll just make it plain: without my three other co-founders, none of that happens. Ideas are a dime a dozen. I think that more business people need…
Angle congruence equivalent to having same measure | Congruence | Geometry | Khan Academy
What we’re going to do in this video is demonstrate that angles are congruent if and only if they have the same measure. For our definition of congruence, we will use the rigid transformation definition, which tells us two figures are congruent if and onl…
Thank You for Watching! | Ingredients With George Zaidan
So, National Geographic gave us the green light to produce Ingredients way back in September of 2015. We made 11 episodes. We’ve been airing them weekly, and if you’ve been keeping track, you know that that means that last week’s episode about gum sweeten…