yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
The People Behind the Photography | Podcast | Overheard at National Geographic
Foreign [Music] To on my first visit to Indonesia in 1998. That’s John Stanmeier, a photographer at National Geographic. That year he was covering mass riots in the country triggered by economic collapse when he met someone who would change his life. I w…
Command and market economies | Basic economics concepts | AP Macroeconomics | Khan Academy
In this video, we’re going to talk about different ways of structuring an economy. In particular, who owns what and how does an economy decide what to produce and who gets the output of that production. So, on one side, you have what’s known as a command…
15 Signs You Have A Rich Life
Are you living the life you’ve always dreamed of? Do you wake up each morning feeling grateful and fulfilled? If not, it’s time to assess if you’re truly living a rich life. But what exactly is a rich life? Is it measured by wealth and material possession…
The True Cost Of "Success"
What’s up you guys? It’s Graham here. So chances are, if you’re watching this video right now, I have a feeling you’re probably more ambitious than most. You probably set pretty high standards for yourself, and you’re willing to do whatever it takes to ge…
Wolf Pack Takes on a Polar Bear - Ep. 1 | Wildlife: The Big Freeze
You can go days without food, traverse unimaginable distances, endure relentless blizzards. But if you’re a wolf on the edge of the Arctic, up against the biggest predator, there’s one thing you can’t do without… (dramatic music) The pack. (dramatic music…
Peter Lynch: The 5 Secrets to Outperforming the Market
So if you’ve been following this channel for any period of time, you know I’m a big fan of Warren Buffett. Just look at all of the videos I’ve made on him and his investing principles. However, what might come as a big surprise to you is that it actually …