yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
Polynomial special products: perfect square | Algebra 2 | Khan Academy
What we’re going to do in this video is practice squaring binomials. This is something that we’ve done in the past, but we’re going to do it with slightly more involved expressions. But let’s just start with a little bit of review. If I were to ask you, w…
Visually dividing decimal by whole number
In this video, we’re going to try to figure out what 4 tenths divided by 5 is. So pause this video and see if you can think about it before we work through it together. We’re really going to think about approaching this visually. All right, now let’s wor…
Why Millennials Aren’t Buying Homes
What’s up, you guys? It’s Graham here. So, as many of you know, I spend way too much time on the internet reading all about money-related topics and studies. Today, all of that research has finally paid off, and this is because my favorite video topics ju…
How to Become More Disciplined - A Quick Guide
Ask yourself this question: Are you someone who relies on motivation or discipline to get things done? Maybe you don’t know the answer to that question, or maybe your answer is, “Well, a little bit of both.” Well, in this video, I’m going to talk about wh…
Subtracting vectors with parallelogram rule | Vectors | Precalculus | Khan Academy
In this video, we’re going to think about what it means to subtract vectors, especially in the context of what we talked about as the parallelogram rule. So, let’s say we want to start with vector A, and from that, we want to subtract vector B. We have v…
How To Maximize Misery | The 4 Stoic Sins
A Stoic’s end goal is to achieve ‘eudaimonia’, which is a state of flourishing that arises when we live in accordance with nature. But how do we live in accordance with nature? The Stoics believe that this requires living ‘rationally’, and that rational p…