yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
The Worth of Water | National Geographic
You know, there’s a saying: even if you are next to a river of water, save each drop because you don’t know whether there will be a drop tomorrow. The more people on Earth, the less available water we’re going to have to drink. The most important thing is…
2010 Holiday/Christmas Game Guide: DC Universe Online, Dance Central, Cataclysm, AND MORE!
Hey Jeffrey, did you know the holiday seasons are coming up? Oh my God, really? Really! And you know what that means? Awesome games. Awesome games! This is uh Jeff and his [ __ ] friend Adam. Hey, everybody! We’re going to talk about video games here com…
How One Brilliant Woman Mapped the Secrets of the Ocean Floor | Short Film Showcase
19:12. A German meteorologist named Alfred Wegener proposed the theory about how the Earth’s landmasses formed. He suggested that the great continents of the Earth had once formed a single landmass called Pangaea, which had broken up and drifted apart ove…
Skip counting equal groups
What we have here are pictures of running pigs, and we could try to figure out how many running pigs there are by just counting the pigs. But we’re going to start building some new muscles, and this muscle is going to involve, hey, if we group the pigs in…
2 step estimation word problems
We are told that a race car driver has 28 cars. Each car has four tires. He has to replace all the tires on the cars. He has 22 tires right now. Estimate the total number of tires he needs to buy. So pause this video and see if you can do that. And the ke…
Graphing exponential growth & decay | Mathematics I | High School Math | Khan Academy
This is from the graph basic exponential functions on KH Academy, and they ask us to graph the following exponential function. They give us the function ( H(x) = 27 \cdot \left(\frac{1}{3}\right)^x ). So our initial value is 27, and ( \frac{1}{3} ) is our…