yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: independent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk?

Pause this video and think through this on your own before we work through this together.

All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk. So, I'm going to write this in shorthand. I'm going to use "MNS" for Maya no silk. We are also thinking about Doug not being able to pick silk. So, Maya no silk and Doug no silk.

We know that this could be viewed as the probability that Maya doesn't get silk. She, after all, does get to spin this wheel first. Then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk.

Now, it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So, let's remember Maya will spin first, but it's not like if she picks silk that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again, and so these are really two independent events.

So, the probability that Doug doesn't get silk given that Maya doesn't get silk is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya.

So, what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There are six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin, so five over six.

Then similarly, when Doug goes to spin this wheel, there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So, times five over six, which is of course going to be equal to twenty-five over thirty-six. And we're done.

More Articles

View All
Differentiability and continuity | Derivatives introduction | AP Calculus AB | Khan Academy
What we’re going to do in this video is explore the notion of differentiability at a point. That is just a fancy way of saying, does the function have a defined derivative at a point? So let’s just remind ourselves of a definition of a derivative. There …
How to turn $5000 into $50,000: With guest Ricky Gutierrez
What’s up you guys, it’s Graham here. So I’m joined today by Ricky Gutierrez, and we were hanging out today. I got a message on my Snapchat, a really good question, which I actually worked out perfectly since Ricky was here: How would you turn five thousa…
15 Signs You’re NOT COOL
We are not talking about people who use the wrong emojis here, but there’s a case to be made about some of you not being as cool as you think you are. So, let’s put it to the test and see how many of these you tick off. Here are 15 signs you’re not cool. …
Identifying the constant of proportionality from equation | 7th grade | Khan Academy
When you hear “constant of proportionality,” it can seem a little bit intimidating at first. It seems very technical, but as we’ll see, it’s a fairly intuitive concept, and we’ll do several examples. Hopefully, you’ll get a lot more comfortable with it. …
Geoff Ralston and Adora Cheung Discuss Startup School
All right, Chef/Owner Dora. Thanks for coming in. As Craig, we’re here to talk about Startup School. So, Jeff, could you break down what’s happening this year with Startup School? Sure! Well, Startup School began a couple of years ago with a course Sam …
How To Make A Living With NO "Job" | The Morning Toast Podcast
[Music] Can you tell us you brought us a gift. You set up this entire little moment. What is going on here? Well, today is a very special day in New York and I haven’t been to New York for over a year because of the whole COVID thing. But today my wine c…