yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Batten Down | Life Below Zero
Like we’re stuck at home late. Red-flag! I know for three days I should go get firewood, and we should go get a couple days’ worth of something to eat here: caribou or a few ducks. The Hailstone family spends their summer living in Kowalik, away from the…
Lead Lag
In this video, we’re going to introduce a couple of words to help talk about the relationship between sine and cosine, or different sinusoids that have the same frequency but a different timing relationship. So what I’ve shown here is a plot of a cosine …
9 Stocks Warren Buffett Keeps Buying
Do you want to know the best way to find new investment ideas? I’ll let you in on a little secret: Follow the investment portfolios of great investors. Laws here in the United States make it so that large investors have to show the world every U.S. stock …
John Gotti Sr.'s Rise to Power | Narco Wars: The Mob
[music playing] - It’s snowing out, a little snowing, white Christmas. - I know it’s going to happen any day now. So the plan that they came up with was rather ingenious. They decided to take Paul Castellano out by luring him to one of his favorite resta…
Wrangling Wild Horses in the Mountains of Montana | Short Film Showcase
[Music] Growing up, I was definitely the most interested in the ranch lifestyle. [Music] From a young age, I just really enjoyed riding horses and being outdoors. Making lots of money isn’t my priority; I would rather live in a beautiful place and do the …
Ray Dalio Bets BIG on GOLD
This video is sponsored by Stake. Download the Stake app today and use the referral code AWC to receive a free stock when you fund your account. Details in the description. Ray Dalio has always been a pretty big believer in holding at least a little bit …