yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
My Life As an Adventure Filmmaker and Photographer (Part 1) | Nat Geo Live
I was just down in Antarctica on a really incredible expedition. We’re doing a climate change story on the wildlife and the conditions, and, uh, a fishing story as well on what’s happening down in Antarctica. The last 5 days of the journey, we crossed th…
Has Technological Advancement Gone Too Far? #Shorts #Apple #VisionPro
VR can be an incredible experience. It can convince your body that a fake world is real. Anyone who has looked down into a canyon with their headset on will be very familiar with how it can trick the senses. But to get to that world, you must put on the …
15 Things You Didn't Know About CARTIER
Fifteen things you didn’t know about Cartier. Welcome to a Lux Calm, the place where future billionaires come to get inspired. Hello in Luxor, and welcome to another exciting original video presented by Alex Calm. Today, we’re revealing some interesting …
Life is a Game: This is how you win it
Most people you know are not aware that life is a game meant to be won. That’s why you see them feeling stuck, tired, and bored. Well, by the end of this video, not only will you understand the purpose of the game, but the rules and how to win it too. Li…
Lunar eclipses | The Earth-sun-moon system | Middle school Earth and space science | Khan Academy
Have you ever seen the full moon appear to change from this to this to this all in a couple hours? If so, you’ve witnessed a lunar eclipse. The word eclipse comes from a Greek word meaning “to leave.” For centuries, people have marveled that a full moon …
Student navigation | Using course mastery on Khan Academy | Khan for Educators | Khan Academy
Hi, I’m Stacy with Khan Academy. And today I’m going to show you how students will navigate our new mastery view within the learning platform. Students will no longer need to navigate to a course homepage, or to their learner homepage, in order to find …