yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
EXCLUSIVE: How "Glowing" Sharks See Each Other | National Geographic
This amazing thing happened a few years ago. We accidentally found a fluorescent fish, and then that led us to over 200 fluorescent fish, including two species of sharks. I wanted to film these sharks in their natural world with the shark eye camera and s…
Safari Live - Day 4 | National Geographic
Viewer discretion is advised. Well, it appears as if it’s blue skies with wonderful white clouds this afternoon and this is Safari Live, ready. Standing by. 5, 4, 3, 2, 1… you are live. You are [Music] live. Good afternoon everyone and welcome to Safari L…
Mars 101 | National Geographic
[Music] The Babylonians called it Nargal; the Hindus called it Mongala; the Egyptians called it Harder or the Red One. Today, we know it as the Red Planet. For centuries, Mars has aroused our imaginations. The world’s best scientists and people everywhere…
RFS: AI to build enterprise software
Enterprise software has a reputation among smart programmers as being very boring to work on because you have to go out and do lots of sales. Every enterprise customer wants something that’s slightly different. What if AI could completely change how enter…
Calculating gravitational potential energy | Modeling energy | High school physics | Khan Academy
In previous videos, we have introduced the idea of energy as the capacity to do work, and we have talked about multiple types of energies. We’ve talked about kinetic energy, energy due to motion. We’ve talked about potential energy, which is energy by vir…
Warren Buffett Warns About Diversifying Your Portfolio
Hey everyone! In this video, we are going to listen to Buffett describe why he recommends serious and knowledgeable investors should ignore conventional wisdom and purposely have a concentrated portfolio of stocks. Make sure to stick around to the end be…