yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Can YOU Fix Climate Change?
Never before in human history have we been richer, more advanced or powerful. And yet we feel overwhelmed in the face of rapid climate change. It seems simple on the surface. Greenhouse gases trap energy from the Sun and transfer it to our atmosphere. Thi…
Assignment: Reflections | National Geographic
[Music] Assignment inspiration is a unique opportunity for free photographers to join National Geographic and seek new adventures. What’s exciting is we get to find new talent in three days. One of you will be selected to go on assignment with National Ge…
Example translating points
What we’re going to do in this video is look at all of the ways of describing how to translate a point and then to actually translate that point on our coordinate plane. So, for example, they say plot the image of point P under a translation by five unit…
Strategies for multiplying decimals
In this video, we’re going to further build our intuition for multiplying decimals. So let’s say that we wanted to figure out what eight times seven tenths is. Pause this video and see if you can figure this out on your own. Alright, now there’s several …
STRAPPED INTO A FALLING HELICOPTER - Smarter Every Day 154
Hey, it’s me, Destin. Welcome back to Smarter Every Day. One of the reasons I absolutely love helicopters is that you can get places that you can’t with any other device. So today, I’m with Bradley Friesen here in… where? Bradley: We’re, uh, right now in…
Why you don't have enough money
So pretend you’re this guy and you’re in bed typing in random country names on Google Flights, checking the prices because you know after the pandemic is over, you’re gonna travel the world and see and taste things you’ve never seen or tasted before. But …