yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
LearnStorm Growth Mindset: Dave Paunesku introduces growth mindset
I’m Dave Ponesku and I’m the executive director of Pertz, which is the Project for Education Research at Scale. It’s a center at Stanford University. Pertz makes a variety of resources that help educators learn about the science of motivation, and we do t…
Elephant Encounter in 360 - Ep. 2 | The Okavango Experience
Travie giant elephants in front of you, interacting with you, connecting with you, smelling you, listening to you, looking at you, telling you to stop, telling you to go away, telling you to stay. I am fine with you. Those interactions are powerful to me.…
Embrace World Mental Health Day with Sal Khan
Sal Con here from Khan Academy, and we are inside, uh, my office/sl closet. This is where I record videos, take meetings, etc. Uh, many of y’all know I’m a big fan of meditation. It helps me clear my mind; it helps me think more clearly, be less stressed,…
5 Ways to Forgive Someone Who Wronged You
Feelings of bitterness and revenge are like heavy stones we carry around on our backs. And if we’re unable or unwilling to throw these stones onto the ground and walk away from them, we’ll not only exhaust ourselves; the load also increases because of new…
The Meaning of Life
The meaning of life question is kind of a nonsense question. Any end goal will just lead to kind of another goal, lead to another goal. We just play games in life, right? You grow up, you’re playing the school game. You’re playing the social game, then yo…
Acorn Thieves | America's National Parks
This Pine is the Central Bank and Trust of the acorn woodpecker, and every inch is studded with neatly arranged holes—the woodpecker’s safe deposit boxes. Finding the absolutely perfect little vault for every acorn can be quite the puzzle. Each hole has b…