yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
A Bad Situation | Badlands, Texas
Have a visit with this [Applause] fella 211, so I’m going to be out South 118. How you doing? Just ging away? Well, the reason why I stopped you, you’re speeding 85 in a 70. I just am so sorry. I was so sure when they came back with a not-guilty verdict,…
Ben Silbermann at Startup School 2012
Well, first thanks a lot for having me. Um, it’s really exciting for me to be here in front of like so many people that all want to build cool things. I was getting ready for the talk last night, and I was going back through old emails because sometimes …
WWII’s Operation Aphrodite | The Strange Truth
Was this program an act of Allied desperation? Wasn’t there any kind of other way to hit these islands? The Aphrodite program is the Allied version of the Japanese kamikazes. In the Japanese case, they had self-sacrificial pilots who were willing to fly t…
Finding connections between ideas within a passage | Reading | Khan Academy
Hello readers. Today we’re going to talk about making connections. So, I don’t mean to brag, but I have at least one friend. I’m kind of a big deal! I have friends at work, friends from the schools I attended, friends in my apartment building, in my neigh…
Monarch Butterflies Get Tiny Radio Trackers | Expedition Raw
[Music] He’s like a little kid. It’s wonderful. We’re trying to put the first electronic tag on a free flying migrating monarch butterfly. If that works, then we could for the first time really follow them in the wild, how they migrate, and find out exact…
From Startup to Scaleup | Sam Altman and Reid Hoffman
Thank you all for coming here. You’re, um, uh, everyone here is an important part of our, uh, of our joint Network. Um, this event started with a, um, kind of a funny set of accidents. First, Sam had this brilliant idea of teaching a startup class at Stan…