yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Is FIRE actually achievable? Can you retire early? (Financial Independence Retire Early)
Hey guys! Welcome back to the channel! In this video, we are going to be discussing one of my favorite topics to talk about, and that is, of course, financial independence and thus the ability to retire early. This is something that’s become a full-on tre…
Homeroom with Sal & Dan Roth - Wednesday, November 11
Hi everyone! Welcome to the homeroom live stream. Sal here from Khan Academy. I’m excited about our conversation today with Dan Roth, editor-in-chief of LinkedIn. A lot to talk about on both the future of work and a lot on just the future of media too. I …
Harnessing the Power of Yellowstone’s Supervolcano | Podcast | Overheard at National Geographic
The apocalyptic vision of fire bursting from the earth haunts man with the image of all and nature that is beyond his control. [Music] There’s something about volcanoes that makes them the superstars of natural disasters. Magma violently forcing its way t…
Shepard Tone Illusion .... and more!
Hey, Vsauce. Michael here. And today I released a brand new Vsauce Leanback. A playlist of educational videos from all over YouTube that I think are cool and I host sort of like a Vsauce TV show. You can start that by clicking the box up in the corner or…
Fourier series coefficients for cosine terms
So we’ve been spending some time now thinking about the idea of a Fourier series, taking a periodic function and representing it as the sum of weighted cosines and sines. Some of you might say, “Well, how is this constant weighted cosine or sine?” Well, y…
Biosecurity Nightmare | To Catch a Smuggler: South Pacific | National Geographic
Auckland International Airport welcomes over 350,000 visitors from the USA every year. Many bring dreams of a wonderful holiday, but this woman has brought a biosecurity nightmare. “I’ve just seen the most incredible thing, a cat.” And the lady says, “It…