yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
The Problem With Startup "Experts"
There’s a lot of advice giving things that are attached to a large tech company or like a European conglomerate, and they’re like, “This is our Innovation lab and we are going to work with startups. Yes, and like we’ll be your first customer, we’ll be you…
Alcohol 101 | National Geographic
[Music] Alcohol has been a component of human culture for thousands of years. From its prehistoric inception to its many uses in modern times, alcohol has had countless effects on our cultures and our lives. Throughout the course of human history, alcohol…
Building Your Board | Glenn Kelman
I’m Glenn, um, and I’m here to talk about building the board. I was surprised that James Slavit, the Greylock partner, asked me to discuss this topic because I’ve actually had sort of a fraught relationship with our board. In fact, I really didn’t have mu…
Balaji Srinivasan at Startup School 2013
I can talk about white combinator. I guess you guys all know about that. Uh, let me introduce myself briefly while, uh, things are loading here. So, uh, my name is Bology S. Boson. Um, there’s actually 12 people with my same first and last name in the Bay…
Donald Trump's Strategy #money #viral #election
Now you got to tell me about Taiwan Semiconductor. They are sharply lower this morning, and I think I know why. It’s got something to do with Donald Trump, hasn’t it? Uh, it all started in the NATO discussions in the first mandate Trump had when he asked…
Experimental versus theoretical probability simulation | Probability | AP Statistics | Khan Academy
What we’re going to do in this video is explore how experimental probability should get closer and closer to theoretical probability as we conduct more and more experiments, or as we conduct more and more trials. This is often referred to as the law of la…