yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
7 Steps to Start Building Long-Term Wealth (The Richest Man in Babylon)
George S. Clayson first published The Richest Man in Babylon in 1926. Today, this book is still regarded as one of the best personal finance books ever written due to the wealth of wisdom that lies within its pages. Now, in this book, Clayson focuses on s…
Charlie Munger's Most Iconic Moments
I don’t think there are good arguments against my position. I think the people that oppose my position are idiots. And well, you don’t want to be like the motion picture executive in California. They said the funeral was so large ‘cause everybody wanted t…
Worked example: Product rule with mixed implicit & explicit | AP Calculus AB | Khan Academy
Let F be a function such that F of negative 1 is 3 and F prime of negative 1 is equal to 5. Let G be the function G of X is equal to 1 over X. Let capital F function to find it as the product of those other two functions. What is capital F prime of negat…
Artificial selection and domestication | Natural selection | AP Biology | Khan Academy
Most of us are familiar with dogs, oftentimes known as man’s best friend. What’s fascinating about them is that they are one species, even though different types of dogs, different breeds, could look very, very different. The fact that they’re one species…
Product Leverage Is Egalitarian
Labor and capital are much less egalitarian, not just in their inputs but in their outputs. Let’s say that I need something that humans have to provide; like if I want a massage or if I need someone to cook my food. The more of a human element there is in…
Keep Redefining What You Do
We just finished talking about the importance of working hard and valuing your time. Next, there’s a few tweets on the topic of working for the long term. The first tweet is: “Become the best in the world at what you do. Keep redefining what you do until…