yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Introduction to Middle school physics | Khan Academy
Hi everyone! Sal Khan here and welcome to Middle School Physics. I have Iman Howard who manages all of our STEM content. Iman, why should folks be excited about Middle School Physics? So, Middle School Physics is like the only science out there that exp…
Share your career story with Khan Academy for our new series
Hi, I’m Sal Khan, founder of the Khan Academy, and I’m here to invite you to participate in an exciting project that we have around career. Our mission statement as a not-for-profit is to provide a free, world-class education for anyone, anywhere, and par…
The Fermi Paradox: Where are all the Aliens?
Liftoff from a tropical rainforest to the Edge of Time itself. James Webb begins a voyage back to the birth of the Universe. On December 25th, 2021, NASA launched the successor to the Hubble Space Telescope, the James Webb Space Telescope. Hubble has pro…
Telling time to the nearest minute: unlabeled clock | Math | 3rd grade | Khan Academy
Let’s look at the clock and see what time is shown. The clock has two hands: this first shorter one, which represents the hours, and then there’s a longer hand here that represents the minutes. So we can start with the hours. This shorter hand right here…
Rate problems
[Instructor] So we’re told that Lynnette can wash 95 cars in five days. How many cars can Lynnette wash in 11 days? So like always, pause this video and see if you can figure this out. The way that I would like to tackle it is given the information they…
YC Startup Talks: Startup Equity with Compound (YC S19)
[Music] foreign [Music] Nice to meet you all! My name is Jordan. I’m one of the founders of Compound. Today, I’m very excited to chat with you about my hatred of personal finance. So, I hate finance more, or as much as most people, perhaps. You know, ma…