yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Variables and assignment | Intro to CS - Python | Khan Academy
When we run a program, the computer executes each instruction line by line. Then, when it finishes with an instruction, it clears out its working memory, so the computer has forgotten what it just did by the time it gets to the next line. But what if we w…
What Everyone Gets Wrong About Planes
(brooding music) Most plane doors aren’t locked. There are no keys, no sensors, or passcodes to secure them. If someone wants to pull the lever, they can. A man opened the emergency exit door and forced his way off the plane. And yet with 40 million flig…
What You Do Counts | Podcast | Overheard at National Geographic
Foreign hey there it’s Amy. Today we’ve got something special for you. We’ve invited our Nachio colleague and Reporting resident Jordan Salama to guest host overheard. He’s going to introduce us to a 22-year-old climate activist and Nat Geo explorer who h…
Why You Care So Much
I made my first video on this channel in July 2017 after months of going back and forth on whether or not I actually wanted to create a YouTube channel. What would people think? What if people hate the videos and tell me that I don’t know what I’m talking…
Why The Stock Market Will Keep Falling
What’s up, guys? It’s Graham here. So, it seems as though every few months there’s a new major shift in the market that continues to pull prices from one side to another. This week, we might just have the next major catalyst that would completely change t…
The Crux Episode 1 | Full Episode | National Geographic
Traditionally, climbers are seen as very friendly, lovely people. I love the climbing community, and it’s just so beautiful. Everyone in the competitions really feels like close friends to me; I love the atmosphere. I love the camaraderie. I love my teamm…