yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Khan for Educators: Khan Academy’s learning experience
So, at Khan Academy, we are striving to create personalized mastery-based learning that transforms students’ mindsets. Within that, I think there are three things that make our value proposition unique. The first is that our content is provided free of c…
Improvising in Africa. Warning - GROSS - Smarter Every Day 28
Hey, it’s me, Destin. So, a lot of you may not know, because you’re new to Smarter Every Day, but I have a sister who lives in West Africa as a peace corps volunteer, and I went and helped her teach math and science. Every once in a while, I like to uploa…
This is How The World Ends
First, you have to know what happens when an atomic bomb explodes. You will know when it comes; we hope it never comes. But get ready; it looks something like this. In 1947, an international group of researchers called the Chicago Atomic Scientists began…
Mapping the Future of Global Civilization | Nat Geo Live
That world of political geography is not going away. But, at the same time, we are engaging in this topographical engineering. These very robust engineering systems by which we modify the planet to suit what we want it to do, what our various economic and…
(LISTEN TO THIS EVERY DAY) Earl Nightingale - The Strangest Secret (FULL) - Patrick Tugwell
I’d like to tell you about the strangest secret in the world. Some years ago, the late Nobel Prize-winning Dr. Albert Schweitzer was being interviewed in London, and a reporter asked him, “Doctor, what’s wrong with men today?” The great doctor was silent …
Creativity break: Why is creativity important in STEM jobs? | Algebra 1 | Khan Academy
I think my idea of how creativity works and STEM jobs has changed since I’ve gotten to college. Like, I used to think that all the mathematicians would be just locked away in some office and like typing on their computers or writing down equations by them…