yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
This world is a mess… and Nietzsche saw it coming.
The infamous philosopher Friedrich Nietzsche famously proclaimed, “God is dead. God remains dead. And we have killed him,” a statement that would become one of his most memorable quotes. These words point to the religious decline that existed during Nietz…
THE NEW $1200 STIMULUS CHECK | ALL DETAILS REVEALED
What’s up guys, it’s Graham here. So wow, it’s been a while since we talked about what’s going on with the stimulus check and stimulus package. Even though this is something I have not covered since May 29th, which is basically like a decade in YouTube ti…
A day in the life - my 10,000 subscriber celebration
I just hit 10,000 subscribers on YouTube! I just hit 10,000 subscribers! Nobody cares! I’m going to go to Ralphs, I’m going to buy a cake, we’re going to celebrate tonight! Oh my God, this is crazy! What’s up you guys, it’s Graham here. So I get asked all…
One-sided limits from tables | Limits and continuity | AP Calculus AB | Khan Academy
The function ( f ) is defined over the real numbers. This table gives select values of ( f ). We have our table here; for any of these ( x ) values, it gives the corresponding ( f(x) ). What is a reasonable estimate for the limit of ( f(x) ) as ( x ) appr…
The Harsh Bottom of the World | Continent 7: Antarctica
I think it’s important for people to know about what’s happening in Antarctica, not only just that the science that goes on down there, but what that science is actually trying to tell us about the future of this planet. Most of the research is really foc…
Interpret proportionality constants
We can calculate the depth ( d ) of snow in centimeters that accumulates in Harper’s yard during the first ( h ) hours of a snowstorm using the equation ( d ) is equal to five times ( h ). So, ( d ) is the depth of snow in centimeters and ( h ) is the tim…