yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
This Unstoppable Robot Could Save Your Life
This is a robot that can grow to hundreds of times its size, and it can’t be stopped by adhesives or spikes. Although it looks kind of simple and cheap, it has dozens of potential applications, including, one day maybe saving your life. This video is spon…
Zeros of polynomials: matching equation to zeros | Polynomial graphs | Algebra 2 | Khan Academy
A polynomial P has zeros when X is equal to negative four, X is equal to three, and X is equal to one-eighth. What could be the equation of P? So pause this video and think about it on your own before we work through it together. All right. So the fact …
Creating a Zombie Soap Opera | StarTalk
What I did is I made it a super. I was like, what if people kiss while zombies are trying to eat them? And then people were like, I like this romance stuff. Relationships, really? Yeah, I mean, I don’t know. I’m interested in that kind of stuff. I mean, I…
how lofi hip-hop took over youtube
I read through a lot of the comments on my videos. I’ll usually heart the ones that make me laugh or just stick out to me in some way. A lot of them are really nice and thoughtful; others are just weird. But whether it’s good or bad, insightful or just a …
_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let’s say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX. Does u-substi…
How to Build a Blind | Live Free or Die: DIY
[Music] When I talk to people about seeing all kinds of wildlife, they’re always amazed. They say they go into a forest, or a park, or a wooded area to take pictures of wildlife or birds, and they don’t see anything. So come along and I’ll show you how t…