yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Moderating content with logical operators | Intro to CS - Python | Khan Academy
Let’s design a program with compound Boolean expressions. We’re working on an automated content moderation system for our site. We want our system to automatically flag posts that seem questionable so our team can investigate further and decide which one…
You Don't Type Alone.
Hey, Vsauce. Michael here. And thank you for clicking on this video. But how many times a day do you click? And how many times a day do you type keys on a keyboard? You might be surprised by the answer. And one of the best ways to know exactly how many ac…
How to STAND OUT and get noticed
What’s up, you guys? It’s Graham here. So, I’m saying to be explaining why it’s so important to be different, to stand out, and how that can help you beat the competition. And by the way, it totally doesn’t matter what business you’re in. I don’t care if …
Examples dividing by tenths and hundredths
Welcome! So let’s see if we can figure out what 8 divided by 0.4 is. Pause this video and see if you can work through that. All right, so we’re trying to figure out what eight ones divided by four tenths is. One way to think about that is to think about…
Y Combinator Partners Q&A
I’m Cat Manik. I’m a partner at Y Combinator, and honestly, one of my favorite parts, one of the best parts of working at Y Combinator, is getting to work with the other partners. So, I’m really pleased right now to invite them all on stage. We’re going t…
A Tragic Accident Left Her Paralyzed. Now She Dances on Wheels | Short Film Showcase
I don’t look at my disability as good or bad or indifferent; it just is. So I don’t spend any time thinking about what I could have accomplished had I not had that accident. I’m interested in what’s going on right now. This is the body I have to dance in,…