yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Exclusive Sneak Peek | Diana: In Her Own Words
[Music] [Music] Right questions here we [Music] are. Yeah, has anything come up since the last meetings? Any afterthoughts? Well, only about being accused at very H of stopping him hunting and shooting. Let’s now go back to the other life before this l…
Wildlife and the Wall | WILDxRED
We are going to build the wall. It will be a real war, a real war. Are you ready? Are you ready? This is the Rio Grande; that is Mexico; that is the United States; Texas; and that is Mother Nature’s wall. It’s pretty great. The Rio Grande starts at Colora…
my 6am productive morning routine
Good morning! Hi guys, it’s me. Today I just woke up, as you can probably tell. I’m like super sleepy. It’s currently 8:20 AM. I was planning to wake up at 6:30 AM, but I snoozed my alarm a couple of times, and I didn’t realize it. And it’s currently 8:20…
Safari Live - Day 118 | National Geographic
Good afternoon and welcome to the sunset safari! Off to a great start already! We did in fact have a butterfly sitting on a piece of grass. It was a cabbage white, but of course it flew away just before we went live. Naturally, my name is Taylor McCurdy a…
These are the questions you should be asking at a late-stage startup.
When a company goes public or when a company is acquired for a lot of money, the market is looking at how much revenue that company is making and is that revenue growing. I would say that, you know, for example, if I’m at a company right now that’s making…
Should You Follow Your Passion? – Dalton Caldwell and Michael Seibel
Guess what gives you passion? You want to hear the secret? Guess what keeps you attached to an idea? That damn thing — working, success, users, revenue numbers — that makes a lot of these folks that have no particular ideas suddenly care a lot more when t…