yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
What is an Alpha Male?
It may be helpful to think about masculinity by asking yourself: what is an alpha male? What is the hyper example of masculinity? I think when you look at that definition—whatever it is for yourself—then you will realize what you aspire to be and how you …
Second derivative test | Using derivatives to analyze functions | AP Calculus AB | Khan Academy
So what I want to do in this video is familiarize ourselves with the second derivative test. Before I even get into the nitty-gritty of it, I really just want to get an intuitive feel for what the second derivative test is telling us. So let me just draw…
Eliminate | Vocabulary | Khan Academy
What’s up, wordsmiths? This video is about the word eliminate. [Music] It’s a verb. It means to remove or get rid of something. The word comes to us from Latin, and it’s a combination of two parts: “ex,” which means out or away (think exit), and “limit,”…
Jessica Livingston : How to Build the Future
Hi everyone, my name is Sam Alman and this is how to build the future. Today, our guest is Jessica Livingston, the founder of Y Combinator, where I now work. Y Combinator has funded 1,500 startups and they’re worth more than $70 billion in total. More tha…
YC Tech Talks: Defi and Scalability with Nemil at Coinbase (S12)
Cool! Thanks everyone. I’m super excited to talk. My name is Nimail. I’m at the head of crypto at Coinbase, and I’m excited to talk to you today about DeFi and scalability. Um, but in part of talking about that, I’ll talk about the landscape for crypto an…
HOW TO DOUBLE YOUR MONEY
What’s up you guys? It’s Graham here! So unfortunately, we got a little bit of bad news, and that is that T-Series is catching up to PewDiePie’s. So we need to make sure, number one, everyone is subscribed to PewDiePie; number two, everyone needs to unsub…