yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
What's Changed In The American Economy? | Montana On The Rise
[Applause] [Music] Thank you very much, I appreciate it. Um, I would like to talk a little bit about the changes in America that have occurred over the last two and a half years. Obviously, everybody’s gone through this pandemic, but it’s what it’s done t…
Watch Expert Reveals: The Secret Market of Million-Dollar Timepieces (Pt.2)
In the year 1900 this little pocket watch cost 250 dollars. Yeah, today it’s worth six thousand dollars. Is it a good relative investment? How do you know when you buy this that it is authentic? It’s over 100 years old. How do you know with certainty? I …
Theravada and Mahayana Buddhism | World History | Khan Academy
What I’d like to do in this video is talk about the major schools of Buddhism as it is practiced today. It can be broadly divided into Theravada Buddhism, which means “school of the elder monks,” and Mahayana Buddhism, which means “great vehicle.” Maha me…
Godzilla Army Arrives at my door
Ter, I got here. It’s here after months of waiting. Yeah, look, it’s a pile of Godzilla. Godzilla parts. Yellow Godzilla, stand him up. What the heck? He has a mohawk! That’s not Godzilla! I’m glad we only bought one of him. It’s Godzilla without a head …
The Amazing Engineering of Rescue Helicopters - Smarter Every Day 289
Hey, it’s me, Destin. Welcome back to Smarter Every Day. You’re smart; you know how this works by now. We’re in the middle of a deep dive series into the US Coast Guard, and they’re amazing. We’ve talked about how they rescue people. We’ve talked about th…
Anti-Gravity Wheel Explained
Standing on the scale. The wheel is spinning and it still weighs 92 kilograms. You made the prediction. Let’s see what happens when I throw it up over my head in three, two, one. What do you think? I don’t know about you, but to me, it looked like a shaky…