yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you're thinking about the derivative at a point. Here, if you're thinking about the derivative in general, but these are both equivalent. They're both based on the slope of a tangent line or the instantaneous rate of change. Using these, I want to establish some of the core properties of derivatives for us.

The first one that I'm going to do will seem like common sense, or maybe it will once we talk about it a little bit. So, if F of x, if our function is equal to a constant value, well then F prime of x is going to be equal to zero. Now, why does that make intuitive sense? Well, we could graph it. We could graph it. So, if that's my y-axis, that's my x-axis. If I wanted to graph y = F of x, it's going to look like that, where this is at the value y is equal to K.

So this is y is equal to F of x. Notice, no matter what you change x, y does not change. The slope of the tangent line here, well frankly, is the same line. It has a slope of zero. No matter how y is just not changing here, we could use either of these definitions to establish that even further, establish it using these limit definitions.

So let's see the limit, and as h approaches zero of f of x + h. Well, no matter what we input into our function, we get K. So f of x plus h would be K minus F of x. Well, no matter what we put into that function, we get K over h. Well, this is just going to be 0 over h, so this limit is just going to be equal to zero.

So, f prime of x for any x, the derivative is zero. And you see that here, that this slope of the tangent line for any x is equal to zero. So, if someone walks up to you on the street and says, "Okay, h of x, h of x, h of x is equal to pi, what is h prime of x?" You say, "Well, pi, that's just a constant value. The value of our function is not changing as we change our x. The slope of the tangent line there, the instantaneous rate of change, is going to be equal to zero."

More Articles

View All
Rocket Bonfire Bullet Time Experiment - Smarter Every Day 65
Okay, so wine asked me if he could have a fire at my house, and I said yes. They showed up with a truck with speakers or subs or something, and then there’s kids like chopping stuff up with an axe, and they’re throwing stuff in a fire. I don’t know, I don…
The Water Crisis | National Geographic
The following program is paid content for Finish. Fresh water—we can’t live without it, but it’s running out fast. We call this the bathtub ring, and the reservoir has dropped 120 feet in the last 20 years. Now I’m tracking down innovators who are trying…
Column chromatography | Intermolecular forces and properties | AP Chemistry | Khan Academy
In our previous video, we talked about Thin Layer Chromatography. It was this technique used to figure out how many things you have in a sample or maybe say the relative properties, say the relative polarity of the things that you have in the sample. An…
Mars 101 | National Geographic
[Music] To the ancient Romans, the planet Mars was symbolic of blood and war. But to many people today, the red planet may hold the key for a bright new future for humanity. [Music] The story of Mars began about 4.5 billion years ago when gas and dust swi…
Character change | Reading | Khan Academy
Hello readers! One of the wonderful things about stories when they’re given the room to grow and expand is the idea of character change or growth over time. Characters in stories are just like real people; they have the capacity to change, to make mistake…
Jacksonian Democracy part 4
So we’ve been talking about Jacksonian Democracy, and when we last left off, Andrew Jackson had defeated John Quincy Adams in the election of 1828, largely by claiming that Quincy Adams had won the previous election through a corrupt bargain. So Jackson …