yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to remainders


3m read
·Nov 10, 2024

We're already somewhat familiar with the idea of division. If I were to say 8 divided by 2, you could think of that as 8 objects: 1, 2, 3, 4, 5, 6, 7, 8. Divided into equal groups of two. So how many equal groups of two could you have? Well, you could have one, two, three, or four groups of two. And so you'd say eight divided by two is equal to four.

Another way we could have thought about that is, you have one, two, three, four, five, six, seven, eight. If you were to divide it into two equal groups, well, you could have one group of four. Let me make it a little bit cleaner: one group of four, and then a second group of four. So two equal groups. How many in each of those equal groups? Well, there are four in each of those groups.

And so once again, eight divided by two is equal to four. Now we're going to extend our knowledge of division by starting to think about things that don't divide evenly. So what if we were to say, what is 8 divided by 3? Pause this video and see if you can think about that a little bit.

Alright, so let's draw eight objects again: 1, 2, 3, 4, 5, 6, 7, 8. One way to think about it, as we thought about it here, is can we divide this into groups that all have three in them? And how many groups would we be able to make of three? Let's try it out. I can make this group of three. I can make this second group of three, but I can't make any more groups of three.

And what I have left over are these two. The way that you would describe this—or one way to describe this is, "Hey, I was able to make two groups of three." So it's equal to two, and there's some left over. There's a remainder. Let me write that down: an important concept there is a remainder of 2 as well.

And so sometimes it's written as just a lowercase r: a remainder of 2. Another way to think about it is 2: this 2 times 3 is 6, and then if you were to put back that remainder, that's how you can get to 8.

Now, another way you could think about it is how we thought about in the second example with 8 divided by 2. Let me draw 8 objects again: 1, 2, 3, 4, 5, 6, 7, 8. You could say, "Hey, let me divide that 8 into 3 equal groups." So pause this video and see if you can divide this into three equal groups and then what might be left over.

Alright, so I'm going to try to divide this into three equal groups. I'm not going to be able to put four in each of those groups because I can only make two equal groups of four. I'm not gonna be able to put three into those three equal groups because that would actually be nine for doing that.

So each of my groups are going to have to be two. So I could make one group of two, another group of two, and there you go: three equal groups of two. I was able to sort out three equal groups of two with just 6. But once again, I have a remainder. I'm not able to make use of these two. They're not able to fit into one of, in this case, one of the three equal groups.

If I said four equal groups, then they would fit in. But if I just said 3 equal groups because I'm dividing by 3, then I have this left over. Again, let's do one more example. What if I were to ask you, what is 13 divided by 4? Pause this video and think about it, and as you might imagine, there will be a remainder involved.

Alright, well, let's draw 13 objects: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. We could try to divide this into equal groups of four. That's one way to think about it. So let's see: that's a group of four. I have one group of four; that's a group of four. I have two groups of four, and then that is a group of four.

So I'm able to find three equal groups of four, so this is equal to three. Another way to think about it: four goes into thirteen three times, but then I have this little lonely circle here. I have one left over. I have a remainder of one because four times 3 gets you to 12, but then if you want to get to 13, well then you've got to throw in that remainder there.

More Articles

View All
15 Reasons Why People Look Down On You
Humans are judgmental. And while most people won’t outright insult someone, our minds still form very quick, firm opinions about people. If you think someone looks down on you, well, honestly, they actually might. If something feels off with the way they …
Bullet vs Prince Rupert's Drop at 150,000 fps - Smarter Every Day 165
All right, Keith. Prince Rupert’s drop. Prince Rupert’s drop, right? Paper submitted from 1660 to the Royal Society. So this is a very early stuff. Hey, it’s me, D. Welcome back to Smarter Every Day. I am in the basement of the Royal Society in London, En…
The Best Video Essays of 2022 | Aperture
The useless information, the things that we think about when we want to escape. Time flies like an arrow, but fruit flies like a banana. I mean, fruit flies don’t fly like a banana; even bananas probably don’t fly like bananas. Not like I’ve seen a banana…
Solving exponential equations using exponent properties | High School Math | Khan Academy
Let’s get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1). So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Any…
Aloneness vs. Loneliness | What's The Difference?
At the end of the day, loneliness is just a mindset. I won’t deny that it can be difficult to get rid of feelings of loneliness because the desire for companionship is deeply ingrained in human nature. However, this doesn’t mean that we have to suffer whe…
When This Number Hits 5200 - You Will be Dead
Wrapping your mind around your life is pretty hard because you’re up to your neck in it. It’s like trying to understand the ocean while learning how to swim. On most days, you’re busy just keeping your head above water, so it’s not easy to figure out what…