yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Verifying inverse functions by composition: not inverse | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] Let's say that f of x is equal to two x minus three, and g of x, g of x is equal to 1/2 x plus three. What I wanna do in this video is evaluate what f of g of x is, and then I wanna evaluate what g of f of x is. So first, I wanna evaluate f of g of x, and then I'm gonna evaluate the other way around. I'm gonna evaluate g of f of x.

But let's evaluate f of g of x first. And I, like always, encourage you to pause the video and see if you can work through it. This is going to be equal to, f of g of x is going to be equal to, wherever we see the x in our definition for f of x, the input now is g of x, so we'd replace it with the g of x. It's gonna be two times g of x. Two times g of x minus three.

And this is going to be equal to two times, well, g of x is all of that business, two times 1/2 x plus three, and then we have the minus three. And now we can distribute this two, two times 1/2 x is just going to be equal to x. Two times three is going to be six. So x plus six minus three. This is going to equal x plus three. X plus three, all right, interesting.

That's f of g of x. Now let's think about what g of f of x is going to be. So g of, our input, instead of being, instead of calling our input x, we're gonna call our input f of x. So g of f of x is going to be equal to 1/2 times our input, which in this case is f of x. 1/2 time f of x plus three. You can view the x up here as the placeholder for whatever our input happens to be.

And now our input is going to be f of x. And so, this is going to be equal to 1/2 times, what is f of x? It is two x minus three. So, two times x minus three, and we have a plus three. And now we can distribute the 1/2. 1/2 times two x is going to be x. 1/2 times negative three is negative 3/2s. And then we have a plus three.

So let's see, three is the same thing as 6/2s. So 6/2s minus 3/2s is going to be 3/2s. So this is going to be equal to x plus 3/2s. So notice, we definitely got different things for f of g of x and g of f of x. And we also didn't do a round trip. We didn't go back to x. So we know that these are not inverses of each other.

In fact, we just have to do either this or that to know that they're not inverses of each other. These are not inverses. So we write it this way. F of x does not equal the inverse of g of x. And g of x does not equal the inverse of f of x. In order for them to be inverses, if you have an x value right over here, and if you apply g to it, if you input it into g, and then that takes you to g of x, so that takes you to g of x right over here, so that's the function g, and then you apply f to it, you would have to get back to the same place.

So g inverse would get us back to the same place. And clearly, we did not get back to the same place. We didn't get back to x, we got back to x plus three. Same thing over here. We see that we did not get, we did not go get back to x, we got to x plus 3/2s. So they're definitely not inverses of each other.

More Articles

View All
Money creation in a fractional reserve system | Financial sector | AP Macroeconomics | Khan Academy
Let’s say for some reason you had lent the government one thousand dollars, and so the government has given you a formally issued piece of paper that says, “Hey, we the government owe you one thousand dollars.” This is issued by the treasury. This could b…
Article II of the Constitution | US Government and Politics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m investigating Article 2 of the Constitution, which establishes the executive branch of government. It’s Article 2 that establishes the office of the President of the United States, tells us who’s eligible f…
Outlasting the Enemy in Shok Valley | No Man Left Behind
On October 2nd of 2008, we received the mission to go conduct an operation in the northern province of Nurse T in Afghanistan. The mission was to conduct a raid on a high-value target. The plan was to infiltrate from the bottom of the valley and work our …
2015 AP Chemistry free response 2f
During the dehydration experiment, Ethan gas and unreacted ethanol passed through the tube into the water. The ethine was quantitatively collected as a gas, but the unreacted ethanol was not. Explain this observation in terms of the intermolecular forces …
Trekking Through One of Africa's Most Majestic Places | National Geographic
The Delta of the Okavango is, for me, the most majestic place on earth. From the expedition, you learn so much; it’s much more than science. It’s much more than just being in a pretty place. Personally, it changed every molecule in my body. It changed the…
Properties perserved after rigid transformations
What we’re going to do in this video is think about what properties of a shape are preserved or not preserved as they undergo a transformation. In particular, we’re going to think about rotations and reflections. In this video, both of those are rigid tra…