yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Verifying inverse functions by composition: not inverse | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] Let's say that f of x is equal to two x minus three, and g of x, g of x is equal to 1/2 x plus three. What I wanna do in this video is evaluate what f of g of x is, and then I wanna evaluate what g of f of x is. So first, I wanna evaluate f of g of x, and then I'm gonna evaluate the other way around. I'm gonna evaluate g of f of x.

But let's evaluate f of g of x first. And I, like always, encourage you to pause the video and see if you can work through it. This is going to be equal to, f of g of x is going to be equal to, wherever we see the x in our definition for f of x, the input now is g of x, so we'd replace it with the g of x. It's gonna be two times g of x. Two times g of x minus three.

And this is going to be equal to two times, well, g of x is all of that business, two times 1/2 x plus three, and then we have the minus three. And now we can distribute this two, two times 1/2 x is just going to be equal to x. Two times three is going to be six. So x plus six minus three. This is going to equal x plus three. X plus three, all right, interesting.

That's f of g of x. Now let's think about what g of f of x is going to be. So g of, our input, instead of being, instead of calling our input x, we're gonna call our input f of x. So g of f of x is going to be equal to 1/2 times our input, which in this case is f of x. 1/2 time f of x plus three. You can view the x up here as the placeholder for whatever our input happens to be.

And now our input is going to be f of x. And so, this is going to be equal to 1/2 times, what is f of x? It is two x minus three. So, two times x minus three, and we have a plus three. And now we can distribute the 1/2. 1/2 times two x is going to be x. 1/2 times negative three is negative 3/2s. And then we have a plus three.

So let's see, three is the same thing as 6/2s. So 6/2s minus 3/2s is going to be 3/2s. So this is going to be equal to x plus 3/2s. So notice, we definitely got different things for f of g of x and g of f of x. And we also didn't do a round trip. We didn't go back to x. So we know that these are not inverses of each other.

In fact, we just have to do either this or that to know that they're not inverses of each other. These are not inverses. So we write it this way. F of x does not equal the inverse of g of x. And g of x does not equal the inverse of f of x. In order for them to be inverses, if you have an x value right over here, and if you apply g to it, if you input it into g, and then that takes you to g of x, so that takes you to g of x right over here, so that's the function g, and then you apply f to it, you would have to get back to the same place.

So g inverse would get us back to the same place. And clearly, we did not get back to the same place. We didn't get back to x, we got back to x plus three. Same thing over here. We see that we did not get, we did not go get back to x, we got to x plus 3/2s. So they're definitely not inverses of each other.

More Articles

View All
BEST IMAGES of the Week -- IMG! #42
Justin Bieber without eyebrows and a hungry shirt. It’s episode 42 of IMG! The lines on the carpet of this game store produce the illusion of pockets and dips. If you’re still not dizzy, take a swig from your Full House flask and then wall down a poppy s…
7 TYPES OF PEOPLE STOICISM WARNS US ABOUT (AVOID THEM) | STOICISM
You’ve probably heard the saying, “You’re the average of The Five People You spend the most time with.” Well, today we’re going to explore that idea through a stoic lens. Here we’ll go over the seven kinds of people who can sabotage your stoic philosophic…
Energy graphs for simple harmonic motion | Simple harmonic motion | AP Physics 1 | Khan Academy
What I have drawn here is a mass sitting on a frictionless surface that is attached to a spring that is attached to the wall. What we’re going to do is we’re going to compress the spring; we’re going to get the mass to position A. Right now it’s at positi…
Dostoevsky - Walk Your Own Path, Face Your Errors
In Crime and Punishment, Fyodor Dostoevsky wrote, “That’s man’s one privilege over all creation. Through error you come to the truth! I am a man because I err! You never reach any truth without making fourteen mistakes and very likely a hundred and fourte…
Last Wild Places: Iberá | National Geographic
(Inspirational music) (Thunder rolls) [Sebastián] Iberá was a place that was degraded by humans. And it’s a place that is being recovered by humans. It’s an incredible example of what we can achieve if we have the decision of restoring an ecosystem on a …
Inventing Graphics on Cave Walls | Origins: The Journey of Humankind
Early humans communicated with pictures and markings painted on cave walls and began to gradually work out symbols. As these markings spread and were understood and accepted, then you had the widespread transmission of ideas. We can see the very early day…