yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Verifying inverse functions by composition: not inverse | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] Let's say that f of x is equal to two x minus three, and g of x, g of x is equal to 1/2 x plus three. What I wanna do in this video is evaluate what f of g of x is, and then I wanna evaluate what g of f of x is. So first, I wanna evaluate f of g of x, and then I'm gonna evaluate the other way around. I'm gonna evaluate g of f of x.

But let's evaluate f of g of x first. And I, like always, encourage you to pause the video and see if you can work through it. This is going to be equal to, f of g of x is going to be equal to, wherever we see the x in our definition for f of x, the input now is g of x, so we'd replace it with the g of x. It's gonna be two times g of x. Two times g of x minus three.

And this is going to be equal to two times, well, g of x is all of that business, two times 1/2 x plus three, and then we have the minus three. And now we can distribute this two, two times 1/2 x is just going to be equal to x. Two times three is going to be six. So x plus six minus three. This is going to equal x plus three. X plus three, all right, interesting.

That's f of g of x. Now let's think about what g of f of x is going to be. So g of, our input, instead of being, instead of calling our input x, we're gonna call our input f of x. So g of f of x is going to be equal to 1/2 times our input, which in this case is f of x. 1/2 time f of x plus three. You can view the x up here as the placeholder for whatever our input happens to be.

And now our input is going to be f of x. And so, this is going to be equal to 1/2 times, what is f of x? It is two x minus three. So, two times x minus three, and we have a plus three. And now we can distribute the 1/2. 1/2 times two x is going to be x. 1/2 times negative three is negative 3/2s. And then we have a plus three.

So let's see, three is the same thing as 6/2s. So 6/2s minus 3/2s is going to be 3/2s. So this is going to be equal to x plus 3/2s. So notice, we definitely got different things for f of g of x and g of f of x. And we also didn't do a round trip. We didn't go back to x. So we know that these are not inverses of each other.

In fact, we just have to do either this or that to know that they're not inverses of each other. These are not inverses. So we write it this way. F of x does not equal the inverse of g of x. And g of x does not equal the inverse of f of x. In order for them to be inverses, if you have an x value right over here, and if you apply g to it, if you input it into g, and then that takes you to g of x, so that takes you to g of x right over here, so that's the function g, and then you apply f to it, you would have to get back to the same place.

So g inverse would get us back to the same place. And clearly, we did not get back to the same place. We didn't get back to x, we got back to x plus three. Same thing over here. We see that we did not get, we did not go get back to x, we got to x plus 3/2s. So they're definitely not inverses of each other.

More Articles

View All
The Contradiction In The U.S. Constitution
Did you know that one of the greatest mathematicians of the 20th century discovered a logical contradiction in the US Constitution that, if found, could be used to legally change America’s democracy into a dictatorship? Well, he did, but we no longer kno…
Where Do GREAT Ideas Come From
Where do great ideas come from? And why do some people have bigger, better ideas than others? When we look at some of the most creative people who have ever lived, something jumps out at us. We can look at David Lynch, who wrote and directed Twin Peaks, M…
Q&A With Grey: Favorites Edition
“Challenge: can you post another Q&A within six months?” No. I cannot. “What are your favorite and least favorite kinds of questions to answer?” A long time ago, in a state far away, I did an event with some friends where my job was to pick questio…
Finding features of quadratic functions | Mathematics II | High School Math | Khan Academy
So I have three different functions here. I know they’re all called f, but we’ll just assume they are different functions. For each of these, I want to do three things. I want to find the zeros, and so the zeros are the input values that make the value of…
Talking Investing, Business and YouTube with @NateOBrien
[Music] Well, welcome back to the channel, everybody! We are continuing on with our big new money advent calendar. I’ve got a pretty awesome video coming today because I’m sitting down with the man, the myth, the legend, Mr. Nate O’Brien. How you going, m…
2015 AP Calculus AB 6b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical. So, we want to figure out the points on that curve where the tangent line is vertical. Let’s just remind ourselves what the slope of a tange…