yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Verifying inverse functions by composition: not inverse | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] Let's say that f of x is equal to two x minus three, and g of x, g of x is equal to 1/2 x plus three. What I wanna do in this video is evaluate what f of g of x is, and then I wanna evaluate what g of f of x is. So first, I wanna evaluate f of g of x, and then I'm gonna evaluate the other way around. I'm gonna evaluate g of f of x.

But let's evaluate f of g of x first. And I, like always, encourage you to pause the video and see if you can work through it. This is going to be equal to, f of g of x is going to be equal to, wherever we see the x in our definition for f of x, the input now is g of x, so we'd replace it with the g of x. It's gonna be two times g of x. Two times g of x minus three.

And this is going to be equal to two times, well, g of x is all of that business, two times 1/2 x plus three, and then we have the minus three. And now we can distribute this two, two times 1/2 x is just going to be equal to x. Two times three is going to be six. So x plus six minus three. This is going to equal x plus three. X plus three, all right, interesting.

That's f of g of x. Now let's think about what g of f of x is going to be. So g of, our input, instead of being, instead of calling our input x, we're gonna call our input f of x. So g of f of x is going to be equal to 1/2 times our input, which in this case is f of x. 1/2 time f of x plus three. You can view the x up here as the placeholder for whatever our input happens to be.

And now our input is going to be f of x. And so, this is going to be equal to 1/2 times, what is f of x? It is two x minus three. So, two times x minus three, and we have a plus three. And now we can distribute the 1/2. 1/2 times two x is going to be x. 1/2 times negative three is negative 3/2s. And then we have a plus three.

So let's see, three is the same thing as 6/2s. So 6/2s minus 3/2s is going to be 3/2s. So this is going to be equal to x plus 3/2s. So notice, we definitely got different things for f of g of x and g of f of x. And we also didn't do a round trip. We didn't go back to x. So we know that these are not inverses of each other.

In fact, we just have to do either this or that to know that they're not inverses of each other. These are not inverses. So we write it this way. F of x does not equal the inverse of g of x. And g of x does not equal the inverse of f of x. In order for them to be inverses, if you have an x value right over here, and if you apply g to it, if you input it into g, and then that takes you to g of x, so that takes you to g of x right over here, so that's the function g, and then you apply f to it, you would have to get back to the same place.

So g inverse would get us back to the same place. And clearly, we did not get back to the same place. We didn't get back to x, we got back to x plus three. Same thing over here. We see that we did not get, we did not go get back to x, we got to x plus 3/2s. So they're definitely not inverses of each other.

More Articles

View All
The Cognitive Tradeoff Hypothesis
This is Inuyama, Japan, a historic city home to Japan’s oldest original wooden castle. It is also home to Kyoto University’s Primate Research Institute. Here, a group of chimpanzees have been trained to play a game that exposes something shocking about th…
Information Overload is Killing Us
Pollution. When you hear that word, what do you think of? Perhaps dangerous gases are being emitted into our atmosphere, garbage floating around the ocean, sick animals due to toxic food. But there’s another pollutant lurking in our society: an invisible …
Analyzing a cumulative relative frequency graph | AP Statistics | Khan Academy
Nutritionists measured the sugar content in grams for 32 drinks at Starbucks. A cumulative relative frequency graph—let me underline that—a cumulative relative frequency graph for the data is shown below. So they have different amounts of sugar in grams …
Three types of sentence | Syntax | Khan Academy
Hello grammarians! Hello Paige! Hi David! So, we have three different sentence varieties that we’re going to talk about today. All right, um here are their three flavors: Flavor number one, declarative sentences; flavor number two, interrogative sentence…
Simplifying hairy exponent expressions
So let’s get some practice simplifying hairy expressions that have exponents in them. We have a hairy expression right over here, and I encourage you to pause the video and see if you can rewrite this in a simpler way. All right, let’s work through this …
Charlie Munger: We're Playing With Fire (Interview)
[Music] Hey guys, welcome back to the channel. We got something really cool to talk about today: Charlie Munger. As you guys know, one of my favorite investors, he recently did a 45-50 minute interview with the California Institute of Technology, which i…