yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Biased and unbiased estimators from sampling distributions examples


4m read
·Nov 11, 2024

Alejandro was curious if sample median was an unbiased estimator of population median. He placed ping-pong balls numbered from zero to 32 in a drum and mixed them well. Note that the median of the population is 16. He then took a random sample of five balls and calculated the median of the sample. He replaced the balls and repeated this process for a total of 50 trials.

His results are summarized in the dot plot below, where each dot represents the sample median from a sample of five balls. So this, right over here, is a sampling distribution of the sample median. You have a population of balls. We know a parameter; we know that the median of the population is 16. This, right over here, is the population.

Then, he keeps taking samples of five balls. So that is a five-ball sample right over there. He calculates the statistic, the median of the sample. He calculates the median there, then he does it again, he calculates the median, then he does it again, he calculates the median, and then he does this 50 times. He does this 50 times, and so what you see plotted right over here, you see 50 dots. Every time he took a sample of five balls and calculated the median, we see that is one of the dots here.

For example, four times he calculated a median of 20. Two times he calculated a median of 19. One time he calculated a median of four. Now they ask us, based on these results, does the sample median appear to be a biased or unbiased estimator of the population median? So pause this video and see if you can come up with an answer to that.

In order to be an unbiased estimator, and that is what you want your estimator to be, you want it to be unbiased. The sampling distribution for that statistic has to be evenly distributed about the true parameter for the population. For example, in this situation, the true parameter for the population—they say note that the median of the population is 16. So that's the thing that you're trying to estimate.

This is where the median of the population is. If we look at the sampling distribution, we see that it is roughly balanced to the left and to the right of that true parameter. So I would say that this is looking pretty unbiased because the sampling distribution is evenly balanced to the left and the right of the true median of the population, that true parameter.

If for some reason, the distribution looked something like this, then it would not be unbiased. Or if the distribution looked something like this, if the distribution if the distribution looked like this, if our sampling distribution was like this, this would mean that we're consistently underestimating the true parameter. And if our distribution looked like this, this means that our statistic is overestimating the true parameter.

Let's do another example. The dot plots below show an approximation to the sampling distribution for three different estimators of the same population parameter. If the actual value of the population parameter is 5, which dot plot displays the estimator with both low bias and low variability? Pause this video and see if you can come up with the answer.

So the population parameter that we're trying to estimate is five. So let's show that on each of these distributions, these approximations of the sampling distributions. So well, over here we have our scale, but this should be one, two, three, four, five, six, seven, and one, two, three, four, five, six, seven. And so our population parameter is five, so that is right over there; that is right over there, and this is right over here.

So which of these statistics seems to be biased? Let's just start there. Pause this video. Which of these look biased to you? Well, the one that looks clearly biased is statistic C. When you look at its sampling distribution, it is consistently to the left of our true parameter, so it's consistently underestimating our parameters. So this one right over here is biased.

Now statistic A and statistic B both look reasonably unbiased. Remember, these are approximations of the sampling distribution. If you want to get closer and closer to the sampling distribution, the true sampling distribution, you would keep taking samples and keep calculating the statistic and keep plotting them on this distribution right over here.

But for statistic A, it looks reasonably balanced to the left and the right. It's not perfectly balanced, but it's reasonable. Remember, these are approximations, and statistic B is also reasonably balanced to the left and the right. Now they don't just say which one has a low bias, but they also say low variability.

I would say both statistic A and statistic B have relatively low bias, but if we talk about low variability, that's how much spread do they have, especially around the true parameter. It looks like statistic A has much lower spread than statistic B right over here.

Statistic B, you've calculated statistics that are two away from the true parameter, while in statistic A, you've calculated a statistic of certain samples that are roughly half away from the true parameter. So the statistic that has both low bias and low variability, that would be statistic A.

More Articles

View All
Inside the Floating Hospital Helping Flood Victims in Bangladesh | National Geographic
[Music] Bangladesh is actually learning how to adapt to the impacts of climate change faster than any other country in the world because the impacts are happening here, and we’re having to deal with them out of necessity. Emirate Friendship Hospital star…
How Animals and Humans Clash and Coexist in Yellowstone | Nat Geo Live
For 20 years, my camera’s led me to some pretty extraordinary places. I could have never imagined that I would be standing on the streets of a place like Pyongyang, North Korea, and 20 years later, I came back to the United States with my cameras, and it’…
Measuring lengths in different units
So I have the same green rectangle up here and down here, and what I want to do is measure its width. But we’re going to measure its width in two different ways. Up here, we’re going to measure its width in terms of how many of these paper clips wide the …
It's Time To Fight Back Against China!
Kevin, are you a tariff man? I am actually in the case of China. I don’t like tariffs generally, but China, we’re in an economic war with. There’s 100% that that’s the case. They don’t play by a level playing field. I do business there, so this is not an …
I Spoke to the REAL Inventor of Facebook. (The Social Network Explained)
Okay, we are now focusing on one of the newest members of Harvard’s class of 2006. Mark Zuckerberg originally launched the Facebook.com from his dorm at Harvard College on the 4th of February 2004. He and his friend Eduardo Saverin had invested a thousand…
Ionic solids | Intermolecular forces and properties | AP Chemistry | Khan Academy
Let’s talk a little bit about ionic solids, which you can imagine are solids formed by ions. So let’s think a little bit about these ions. For example, we could look at group one elements here, especially things like lithium, sodium, or potassium. In many…