yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating E° using standard reduction potentials | AP Chemistry | Khan Academy


4m read
·Nov 10, 2024

Let's do a worked example where we calculate the standard potential at 25 degrees celsius for this reaction. In this redox reaction, silver cations are reduced to form solid silver, and solid chromium is oxidized to form the Cr3 plus ion.

The first step is to write down the half reactions that make up the overall redox reaction. So, we said that silver cations are reduced; therefore, they need to gain an electron to turn into solid silver. Solid chromium, to turn into chromium three plus ions, must lose three electrons.

Next, we need to find the standard voltages for our two half reactions. To do that, we could consult a standard reduction potential table. Here’s our table that shows standard reduction potentials for some reduction half reactions at 25 degrees celsius. The standard reduction potentials, or standard reduction voltages, for these half reactions are all compared to the reduction of H plus ions.

So, two H plus plus two electrons forming hydrogen gas has a standard reduction potential of exactly zero volts. For our particular redox reaction, we need to know the reduction potential for the reduction of silver cations to form solid silver. The standard reduction potential for this half reaction is equal to positive 0.80 volts.

The other half reaction that we need to know about involves the oxidation of solid chromium to chromium three plus cations. But since this is a standard reduction potential table, the half reaction is written as a reduction half reaction. The standard reduction potential for this half reaction is negative 0.74 volts.

Since we need this half reaction written as an oxidation half reaction, if we were to reverse this half reaction how it's written, we would need to change the sign of the voltage. So, the standard oxidation potential would be positive 0.74 volts.

I've gone ahead and written in the voltages for our half reactions. The standard reduction potential for our half reaction was positive 0.80 volts, and the standard oxidation potential for our half reaction is positive 0.74 volts.

Our next step is to make the number of electrons equal for our two half reactions and add them together. For our oxidation half reaction, we're losing three electrons, but for our reduction half reaction, we're only gaining one electron. Therefore, we need to multiply everything through in our reduction half reaction by three.

That gives us three Ag plus plus three electrons goes to three Ag. Notice that even though we multiplied everything through in our reduction half reaction by a factor of three, we did not multiply the standard reduction potential by a factor of three.

That's because voltage is an intensive property and doesn't depend on the amount of substance. So, it doesn't matter if we're talking about the reduction of one mole of silver cations or three moles of silver cations; the standard reduction potential is the same for both half reactions.

When we add our two half reactions together, here are all of the reactants, and then over here would be all of the products. The three electrons would cancel out on both sides and give us 3 Ag plus plus solid chromium goes to 3 Ag plus Cr3 plus, which gives us back our original redox reaction.

Since we were able to add our two half reactions together and get our overall redox reaction, to find the standard voltage for this reaction, we should be able to add together the voltages for the two half reactions. So, positive 0.80 plus 0.74 is equal to positive 1.54 volts.

So, the standard potential for this redox reaction at 25 degrees celsius is equal to positive 1.54 volts. There’s another way to calculate the standard potential for this redox reaction, and this way only uses standard reduction potentials.

To calculate the standard potential for the redox reaction, we take the standard reduction potential for the reduction process and from that we subtract the standard reduction potential for the oxidation process. So, for our reduction half reaction, the standard reduction potential is equal to positive 0.80 volts.

We’d plug that into our equation for the reduction process. For our oxidation half reaction, the standard reduction potential, if you remember from the standard reduction potential table, is equal to negative 0.74 volts. So, that would get plugged into our equation for the oxidation process.

When we plug in our voltages, we get the same answer that we got before. So, the standard potential for our reaction is equal to positive 1.54 volts at 25 degrees celsius.

More Articles

View All
This Particle Breaks Time Symmetry
Most processes in our universe are time reversible. In other words, the physics works the same way forwards or backwards. Which is why you can’t tell if I’m playing these videos normally or in reverse. People typically point to entropy as the only excepti…
Surviving a Coyote Ambush | Something Bit Me!
Ambushed on a desolate road at night, Andrew repels a coyote attack, but the coyote isn’t alone. As soon as I hit the initial coyote on the head with the flashlight, that’s when the other two, you know, saw the aggression from me and started to attack. It…
Khan Academy Ed Talks with Benjamin Riley - Wednesday, January 5, 2022
Hello and welcome to Ed Talks, where we at Khan Academy talk to folks who are influential in the field of education. I’m Kristen Deserver, the Chief Learning Officer here at Khan Academy, and I am happy today to welcome Ben Riley, who is with Deans for Im…
How volume changes from changing dimensions
So, I have a rectangular prism here and we’re given two of the dimensions. The width is two, the depth is three, and this height here, we’re just representing with an h. What we’re going to do in this video is think about how the volume of this rectangula…
Fish Wheel Harvest - Deleted Scene | Life Below Zero
[Music] I’ve had my fish whe running for a few hours now while I’ve been at home taking care of the dogs and doing some other chores. Coming back here, check it, see what I’m catching. This is a big thing for me because it’s going to relieve me financiall…
Creativity break: what are some new ways of thinking about problem solving? | Khan Academy
[Music] We have the opportunity to work together with a variety of different voices, colleagues from all over the world who have different strengths that they bring, different perspectives that they bring about life and about how the world operates. Only …