yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy


less than 1m read
·Nov 10, 2024

We're told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here.

What I want you to first do before I do it with you is see if you can visually think about what the solution is to this system. That is, an ( X ) and ( Y ) pair that satisfy both of these equations. Then I want you to verify that it is indeed the solution.

All right, now when I visually inspect it, it looks like this point right over here is on both lines. If I eyeball it, that looks like the point ( x = -4 ) and ( Y = 6 ), so ((-4, 6)).

But let's verify that that indeed is a point on both of these lines. To do that, let's see what ( Y ) is equal to in each of these when ( X = -4 ).

So in that first one, and maybe I'll do it in that same color just to make it a close color. If I say ( Y = -2 \cdot -4 - 2 ), that's equal to positive ( 8 - 2 ), which is indeed equal to ( 6 ).

So for this blue line, when ( X = -4 ), ( Y ) is indeed equal to ( 6 ). Now let's also do it for this brownish-looking line. There, ( Y = -\frac{1}{4} \cdot -4 + 5 ).

So here we have ( -\frac{1}{4} \cdot -4 ) is ( 1 + 5 ), which is indeed equal to ( 6 ). So that point ((-4, 6)) is indeed on both lines.

More Articles

View All
How overstimulation is ruining your life
During certain periods of my life, I have a very difficult time focusing on pretty much anything important or difficult. During these periods, it seems almost impossible to break out of the social media limbo, where you’re just constantly switching betwee…
Animal communication
Let’s talk a little bit about animal communication. In general, communication is one party giving information to another party somehow. It doesn’t even have to be one to one; it could be one person giving or one animal—if we’re talking about animal commun…
Inside the Epic World of Bertie Gregory | Podcast | Overheard at National Geographic
We’ve got something new this week! Our colleague and National Geographic Channel’s executive producer, Drew Jones, is going to take us behind the scenes of Epic Adventures with Bertie Gregory. I’ll let him and Bertie take it from here. You ready? I’m Bets…
Integrating power series | Series | AP Calculus BC | Khan Academy
So we’re told that ( f(x) ) is equal to the infinite series we’re going from ( n = 1 ) to infinity of ( \frac{n + 1}{4^{n + 1}} x^n ). What we want to figure out is what is the definite integral from 0 to 1 of this ( f(x) ). And like always, if you feel i…
Equivalent fractions on number lines
So they’re telling us that r fifths is equal to eight tenths, and we need to figure out what r is going to be equal to. They help us out with this number line where they’ve put eight tenths on the number line. That makes sense because to go from zero to o…
Scaling & reflecting absolute value functions: graph | High School Math | Khan Academy
Function G can be thought of as a stretched or compressed version of f of x is equal to the absolute value of x. What is the equation for G of x? So you can see f of x is equal to the absolute value of x here in blue. And then G of x not only does it look…