yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy


less than 1m read
·Nov 10, 2024

We're told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here.

What I want you to first do before I do it with you is see if you can visually think about what the solution is to this system. That is, an ( X ) and ( Y ) pair that satisfy both of these equations. Then I want you to verify that it is indeed the solution.

All right, now when I visually inspect it, it looks like this point right over here is on both lines. If I eyeball it, that looks like the point ( x = -4 ) and ( Y = 6 ), so ((-4, 6)).

But let's verify that that indeed is a point on both of these lines. To do that, let's see what ( Y ) is equal to in each of these when ( X = -4 ).

So in that first one, and maybe I'll do it in that same color just to make it a close color. If I say ( Y = -2 \cdot -4 - 2 ), that's equal to positive ( 8 - 2 ), which is indeed equal to ( 6 ).

So for this blue line, when ( X = -4 ), ( Y ) is indeed equal to ( 6 ). Now let's also do it for this brownish-looking line. There, ( Y = -\frac{1}{4} \cdot -4 + 5 ).

So here we have ( -\frac{1}{4} \cdot -4 ) is ( 1 + 5 ), which is indeed equal to ( 6 ). So that point ((-4, 6)) is indeed on both lines.

More Articles

View All
How Does A Slinky Fall?
[Applause] [Music] Now, at some point growing up, most of us have been captivated by one of these: a slinky. But recently, I found out one of the most mesmerizing things about how it moves is something I’d never seen before: how it falls. So what’s so s…
Moral Licensing
Moral psychology isn’t always an easy thing to study. First of all, just using a survey to ask people what they think is moral doesn’t always reveal what they would do in real life. An experiment that actually puts people in what feels like a real scenari…
Intuition for why independence matters for variance of sum | AP Statistics | Khan Academy
So in previous videos, we talked about the claim that if I have two random variables, X and Y, that are independent, then the variance of the sum of those two random variables, or the difference of those two random variables, is going to be equal to the s…
Johnnie Walker Step Inside: The Ultimate Way To Travel
We travel a lot. We’re traveling to races a lot of the time. You have to fly privately. It does give you that buzz. When I first got to ride on a private jet, I couldn’t believe it. The luxury that you get is a couple of ways to travel. Every time I step…
Living Off the Land in Hawaii | Explorer
People in developed countries often take it for granted that they can eat whatever delicacy they want from anywhere in the world. But there are some who fear that this globalization of food is putting all of us at risk, and they are now going back to livi…
Limitless with Chris Hemsworth | Official Trailer | Disney+
Now I may be in pretty decent shape. Sure, I may look like an immortal Norse God, et cetera. Stop it. But… I know the clock is already ticking. I’m teaming up with the world’s leading Longevity experts. [BREATHES] Taking on six of the toughest tests of my…