yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy


less than 1m read
·Nov 10, 2024

We're told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here.

What I want you to first do before I do it with you is see if you can visually think about what the solution is to this system. That is, an ( X ) and ( Y ) pair that satisfy both of these equations. Then I want you to verify that it is indeed the solution.

All right, now when I visually inspect it, it looks like this point right over here is on both lines. If I eyeball it, that looks like the point ( x = -4 ) and ( Y = 6 ), so ((-4, 6)).

But let's verify that that indeed is a point on both of these lines. To do that, let's see what ( Y ) is equal to in each of these when ( X = -4 ).

So in that first one, and maybe I'll do it in that same color just to make it a close color. If I say ( Y = -2 \cdot -4 - 2 ), that's equal to positive ( 8 - 2 ), which is indeed equal to ( 6 ).

So for this blue line, when ( X = -4 ), ( Y ) is indeed equal to ( 6 ). Now let's also do it for this brownish-looking line. There, ( Y = -\frac{1}{4} \cdot -4 + 5 ).

So here we have ( -\frac{1}{4} \cdot -4 ) is ( 1 + 5 ), which is indeed equal to ( 6 ). So that point ((-4, 6)) is indeed on both lines.

More Articles

View All
From Broke To Bugatti | Inside The Millionaire Empire Of Doug DeMuro
This is the like button, and you should hit it. So when you think of a self-started multi-million dollar business that’s accumulated one and a half billion views and outpaces the ranks of even the top-rated television hits, your mind doesn’t think of this…
Chamath Palihapitiya: The #1 Secret to Becoming Rich
Slow and steady against hard problems. Start by turning off your social apps and giving your brain a break because then you will at least be a little bit more motivated to not be motivated by what everybody else [__] thinks about you. I saw some of the v…
Dividing whole numbers by decimals examples
Let’s say we want to figure out what eight divided by four tenths is. Pause this video and try to figure it out on your own before we do it together. All right, now one way to approach this is to think about everything in terms of tenths. And why tenths,…
Secant line with arbitrary point (with simplification) | AP Calculus AB | Khan Academy
A secant line intersects the graph of f of x, which is equal to x² + 5x, at two points with x-coordinates 3 and T, where T does not equal 3. What is the slope of the secant line in terms of T? Your answer must be fully expanded and simplified. And my apo…
Zeros of polynomials introduction | Polynomial graphs | Algebra 2 | Khan Academy
Let’s say that we have a polynomial ( p ) of ( x ) and we can factor it. We can put it in the form ( (x - 1)(x + 2)(x - 3)(x + 4) ). What we are concerned with are the zeros of this polynomial. You might say, “What is a zero of a polynomial?” Well, those …
Ask Sal Anything! Homeroom - Thursday August 27
Hi everyone, Sal here from Khan Academy. Welcome to the Homeroom live stream! Today, we’re going to be doing an ask me anything about anything. So, if you have your questions, start to put them in the message boards underneath this video on Facebook or Y…