yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy


less than 1m read
·Nov 10, 2024

We're told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here.

What I want you to first do before I do it with you is see if you can visually think about what the solution is to this system. That is, an ( X ) and ( Y ) pair that satisfy both of these equations. Then I want you to verify that it is indeed the solution.

All right, now when I visually inspect it, it looks like this point right over here is on both lines. If I eyeball it, that looks like the point ( x = -4 ) and ( Y = 6 ), so ((-4, 6)).

But let's verify that that indeed is a point on both of these lines. To do that, let's see what ( Y ) is equal to in each of these when ( X = -4 ).

So in that first one, and maybe I'll do it in that same color just to make it a close color. If I say ( Y = -2 \cdot -4 - 2 ), that's equal to positive ( 8 - 2 ), which is indeed equal to ( 6 ).

So for this blue line, when ( X = -4 ), ( Y ) is indeed equal to ( 6 ). Now let's also do it for this brownish-looking line. There, ( Y = -\frac{1}{4} \cdot -4 + 5 ).

So here we have ( -\frac{1}{4} \cdot -4 ) is ( 1 + 5 ), which is indeed equal to ( 6 ). So that point ((-4, 6)) is indeed on both lines.

More Articles

View All
We Can’t Prove Most Theorems with Known Physics
The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle’s theorem, and it also comes out of Turing’s proof of what is and is not computable. These things that are not computable vastly outnumber the …
Why I built a private jet in my showroom!
14 years ago, I had to come up with the idea of how to build the best showroom in the world. But the biggest issue was, what the hell do I put inside the window of this showroom? So, I came up with the idea: first of all, how do I get an eye-catching gian…
Evidence of evolution: embryology | Evolution | Middle school biology | Khan Academy
Do you ever wish that you had a tail? You could swing your way to school, bake pies more efficiently, and carry an umbrella while keeping your hands free. The funny thing is, you did have a tail once, before you were born. Back then, you were an embryo.…
LC natural response derivation 3
In the last video, we took a guess at what the solution was for our differential equation, and we came up with an exponential as our guess. As we did the analysis, we developed a characteristic equation. We ended up with a complex answer for one of the ad…
The scientific method
Let’s explore the scientific method. Which at first might seem a bit intimidating, but when we walk through it, you’ll see that it’s actually almost a common-sense way of looking at the world and making progress in our understanding of the world and feeli…
The mindset that's changing my life
I feel like everybody at some point in their life has met somebody who was truly inspiring. You know, they seem to have their life figured out. They are determined; they can carve out their own destiny. They create their own luck. On the flip side, a lot…