yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy


less than 1m read
·Nov 10, 2024

We're told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here.

What I want you to first do before I do it with you is see if you can visually think about what the solution is to this system. That is, an ( X ) and ( Y ) pair that satisfy both of these equations. Then I want you to verify that it is indeed the solution.

All right, now when I visually inspect it, it looks like this point right over here is on both lines. If I eyeball it, that looks like the point ( x = -4 ) and ( Y = 6 ), so ((-4, 6)).

But let's verify that that indeed is a point on both of these lines. To do that, let's see what ( Y ) is equal to in each of these when ( X = -4 ).

So in that first one, and maybe I'll do it in that same color just to make it a close color. If I say ( Y = -2 \cdot -4 - 2 ), that's equal to positive ( 8 - 2 ), which is indeed equal to ( 6 ).

So for this blue line, when ( X = -4 ), ( Y ) is indeed equal to ( 6 ). Now let's also do it for this brownish-looking line. There, ( Y = -\frac{1}{4} \cdot -4 + 5 ).

So here we have ( -\frac{1}{4} \cdot -4 ) is ( 1 + 5 ), which is indeed equal to ( 6 ). So that point ((-4, 6)) is indeed on both lines.

More Articles

View All
Dianna Health Update from SmarterEveryDay
I’ve got some good news and, um, it’s a little complicated, but I would love to explain it to you. My name is Dustin, by the way. Uh, I have a YouTube channel called Smarter Every Day, and this is Physics Girl; this is Diana’s channel. Uh, recently, I we…
Derivatives of inverse functions: from table | AP Calculus AB | Khan Academy
Let G and H be inverse functions. So let’s just remind ourselves what it means for them to be inverse functions. That means that if I have two sets of numbers, so let’s say one set right over there, that’s another set right over there. If we view that fir…
Witness the Majestic Fin Whale | Epic Adventures with Bertie Gregory on Disney+
Oh, I’m Bertie. I want to tell wildlife stories in a rapidly changing world. You ready? We made it to Antarctica, and I’m here to film the mighty fin whale. Antarctica is a monumental challenge to filming at the best of times, but the whale gathering we’r…
What Is The Magnus Force?
[Applause] So I’m back at the University of Sydney with Rod Cross. Hi Derek! And today we’re talking about the effects of air on projectiles. We normally neglect these effects when I’m teaching students about projectiles. I tell them, “Forget about the a…
Lasting Lessons from Charlie Munger.
Charlie Munga: businessman, investor, mathematician, meteorologist, developer, lawyer, husband, father, and philanthropist. But most importantly, Charlie was a thinker. As much as he’s known for his investment track record and decades-long partnership wit…
Experiments in Art and Technology with Artforum Editor Michelle Kuo
So I’ll just start by saying experiments in art and technology was a group that was founded in 1966 by the artist Robert Rauschenberg by an engineer named Billy Kluever, who was a research scientist at Bell Labs at that time. Literally, the heyday, or bas…