yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy


less than 1m read
·Nov 10, 2024

We're told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here.

What I want you to first do before I do it with you is see if you can visually think about what the solution is to this system. That is, an ( X ) and ( Y ) pair that satisfy both of these equations. Then I want you to verify that it is indeed the solution.

All right, now when I visually inspect it, it looks like this point right over here is on both lines. If I eyeball it, that looks like the point ( x = -4 ) and ( Y = 6 ), so ((-4, 6)).

But let's verify that that indeed is a point on both of these lines. To do that, let's see what ( Y ) is equal to in each of these when ( X = -4 ).

So in that first one, and maybe I'll do it in that same color just to make it a close color. If I say ( Y = -2 \cdot -4 - 2 ), that's equal to positive ( 8 - 2 ), which is indeed equal to ( 6 ).

So for this blue line, when ( X = -4 ), ( Y ) is indeed equal to ( 6 ). Now let's also do it for this brownish-looking line. There, ( Y = -\frac{1}{4} \cdot -4 + 5 ).

So here we have ( -\frac{1}{4} \cdot -4 ) is ( 1 + 5 ), which is indeed equal to ( 6 ). So that point ((-4, 6)) is indeed on both lines.

More Articles

View All
The Fed Confirms THREE Interest Rate Rises Are Coming.
Hello, my name’s Brandon. I’m here to talk about inflation. Honestly, I’ve made a lot of videos about inflation. I’m sorry to keep harping on about it; I know it’s not the most interesting of topics in the world, but it is pretty important to keep on top …
The Egyptian and Hittite Peace Treaty | Lost Treasures of Egypt
[Music] In Luxor’s Karnak Temple, Colleen is hunting for clues that explain Ramsay’s rise to power. Ramses was a mighty warrior and general who fought in many campaigns and expanded Egypt’s borders to the east and south. But the temple walls suggest that’…
Tech startups live and die by their speed of shipping software.
I was the single non-technical person on a four-person co-founding team at Justin TV and Twitch. And like, I’ll just make it plain: without my three other co-founders, none of that happens. Ideas are a dime a dozen. I think that more business people need…
Killer Snowballs | Science of Stupid
Welcome to the Science of Stupid Christmas Grotto! As you can see, we have spared literally no expense with the decorations. But what would really make my Christmas would be to wake up on the big day to a fresh dusting of snow. Nothing beats that gentle c…
How to Make it Through Calculus (Neil deGrasse Tyson)
Through it, I have a, I have a— I don’t quite call it elevated to the level of a parable, but it’s a story in my life that I reference all the time. Right now, I share it with you as short. I’m in high school, I’m a junior in high school and I want to ta…
Rational equations intro | Algebra 2 | Khan Academy
[Instructor] Let’s say we wanna solve the following equation for x. We have x plus one over nine minus x is equal to 2⁄3. Pause this video and see if you can try this before we work through it together. All right, now let’s work through this together. N…