yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Speed and precision of DNA replication | Biomolecules | MCAT | Khan Academy


3m read
·Nov 11, 2024

In the earlier video on DNA replication, we go into some detail about leading strands and lagging strands and all of the different actors, all of these different enzymatic actors. But I left out what is probably the most mindboggling aspect of all of this, and that's the speed and the precision with which this is actually happening.

As we talked about in that video, it feels pretty complex. You have this topoisomerase that's unwinding things; the helicase is unzipping it. Then you have the polymerase that can only go from the 5' to 3' direction. It needs a little primer to get started, but then it starts adding the nucleotides. On the lagging strand, you have to have the RNA primer, but then it's going in, it's going from once again from 5' to 3'. So you have these Okazaki fragments and all of this craziness that's happening.

Remember, these things don't have brains; these aren't computers. They don't know exactly where to go. It's all because of the chemistry. They're all bumping into each other and reacting in just the right way to make this incredible thing happen.

Now, what I'm about to tell you is really going to boggle your mind because this is happening incredibly fast. DNA polymerase has been clocked, at least in E. coli, at approaching 1,000 base pairs per second. I think the number that I saw was 700-something base pairs per second. So polymerase—let me write this down; this is worth writing down because it's mindboggling. It gives you a sense of just how amazing the machinery in your cells is.

So, it's been as high as... and it can change; it can speed up and slow down, and that's actually been observed. But it rates as fast as 700 plus base pairs per second. If this, on this diagram, man, it's just zipping. It's just zipping along. At least from our perceptual frame of reference, a second seems like a very short amount of time to us, but at a molecular scale, these things are just bouncing around and just getting this stuff done.

Now the second thing that you might be wondering: okay, this is happening fast, but surely that has a lot of errors. Well, the first thing you might say is: well, if I had a lot of errors, that would really not be good for biology because you always have DNA replicating throughout our lives. At some point, you just have so many errors that the cells wouldn't function anymore.

So lucky for us, this is actually a fairly precise process. Even in the first pass of the polymerase, you have one mistake—let me write this down because it's amazing—one mistake for every approximately 10 to the 7th. So this is 10 million nucleotides. And that might seem pretty accurate, but you've got to remember we have billions of nucleotides in our DNA. So this would still introduce a lot of errors.

But then there is proofreading that goes back and makes sure that those errors don't stick around. Once all the proofreading takes place, it actually becomes one mistake—one mistake for every approximately 10 to the 9th nucleotides.

So, approximately, you can do this at an incredibly fast pace, as fast as 700 plus, approaching 1,000 base pairs per second. And you have one error for every billion nucleotides, especially after you go through these proofreading steps.

It's incredibly fast; it's incredibly precise. So hopefully, that gives you a better appreciation for just the magic that's literally happening. Look at your hand, or just think about this: it's happening in all of the cells, or most of the cells, of your body as we speak.

More Articles

View All
Ecosystem dynamics: Clark’s nutcrackers and the white bark pine | Khan Academy
What’s that? That sound, that call, sounds like something a crow would make but not quite. That’s actually the call of a really interesting bird called Clark’s nutcracker. These birds are cousins of the American crow, which you might see and hear around …
It's Over: China’s ENTIRE Economy Is About To Collapse
Tens of thousands of them have begun withholding payments for unfinished projects. A massive protest over frozen bank deposits. The international community and the financial markets will also feel the pain. “What’s up, guys? It’s Graham here. So I recent…
Organism life history and fecundity | Ecology | Khan Academy
We’re going to talk about in this video is what I consider one of the most fascinating subjects in biology, and that’s the variation we see from species to species in life histories and life spans and their rate of reproduction. For example, we have thre…
BUBBLE FAIL !! Best Images of the Week #37
Shooting a watermelon off your brother’s head and an inverted sandwich. I’m a little sick today, but the best medicine is episode 37 of IMG! Why is this cat so sad? Does he not know that unicorn bicycles exist? The only thing more spectacular might be th…
Simplifying rational expressions: common monomial factors | High School Math | Khan Academy
So, I have a rational expression here, and what my goal is, is to simplify it. But while I simplify it, I want to make the simplified expression be algebraically equivalent. So if there are certain x values that would make this thing undefined, then I hav…
Do Robots Deserve Rights? What if Machines Become Conscious?
Imagine a future where your toaster anticipates what kind of toast you want. During the day, it scans the Internet for new and exciting types of toast. Maybe it asks you about your day and wants to chat about new achievements in toast technology. At what …