yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Identifying an element from successive ionization energies | Khan Academy


2m read
·Nov 10, 2024

We are told that the first five ionization energies for a third period element are shown below. What is the identity of the element? So pause this video and see if you can figure it out on your own, and it'll probably be handy to have a periodic table of elements.

So before I even look at a periodic table of elements, let's make sure we understand what this table is telling us. This is telling us that if we start with a neutral atom of this mystery element, it would take 578 kilojoules per mole to remove that first electron to turn that atom into an ion with a plus one positive charge.

Then it would take another 1817 kilojoules per mole to remove a second electron, so to make that ion even more positive. After that, it would take another 2745 kilojoules per mole to remove the third electron. Then, to remove the fourth electron, it takes a way larger amount of energy. It takes 11,000 kilojoules per mole, and then the fifth electron takes even more: 14,842 kilojoules per mole.

For the first, second, and third, you do have an increase in ionization energy, but when you go to the fourth, the energy required to remove those is way higher. So to me, these look like you're removing valence electrons, and these look like you're removing core electrons.

One way to think about it is let's look at our periodic table of elements and look for a third period element that has three valence electrons. So we have our periodic table of elements. We want a third period element, so it's going to be in this third row. Which of these has three valence electrons?

Well, sodium has one valence electron, magnesium has two valence electrons, aluminum has three valence electrons. So one way to think about it is that first electron: it's a reasonable ionization energy. Then the second one, a little higher; then the third, a little bit higher than after that. But then the fourth, you're starting to go into the core. You're going to have to take an electron out of that full second energy shell, which takes a lot of energy.

So this is pretty clearly aluminum that is being described.

More Articles

View All
How a bill becomes a law | US government and civics | US government and civics | Khan Academy
In other videos, we have first started talking about the legislative branch of the United States federal government. We talk about how it has two houses: the Senate, which has 100 members (two per state, two times fifty), and the House of Representatives,…
Animal communication
Let’s talk a little bit about animal communication. In general, communication is one party giving information to another party somehow. It doesn’t even have to be one to one; it could be one person giving or one animal—if we’re talking about animal commun…
Who Inspired Wakanda’s Women Warriors? | Podcast | Overheard at National Geographic
Foreignly, I heard the term Dahomey Amazons throughout the years but never really thought much more about them other than they were this sort of mythical group of women who did amazing things. You might have heard of the Marvel superhero Black Panther. He…
How to Eliminate Single-Use Plastics on Vacation | National Geographic
[Music] Made it through the first leg of the trip. It is now 9:00 a.m. I have been up for quite a few hours, and there are no snacks that I could buy because everything is wrapped in plastic. Hi, I’m Marie McCrory with National Geographic Travel. Recentl…
Partial sums: term value from partial sum | Series | AP Calculus BC | Khan Academy
We’re told that the nth partial sum of the series from N equals one to infinity of a sub n is given by, and so the sum of the first n terms is N squared plus 1 over n plus 1. They want us to figure out what is the actual seventh term. And like always, pau…
Getting The Shot - Behind the Scenes | Life Below Zero
[Music] Working, that’s getting super frustrating. This is what it’s like on Life Below Zero: down tough conditions all around, a filament, no heat, no power, do anything, won’t even turn on, and falling too many times we have balance. It’s just a typical…