yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Identifying an element from successive ionization energies | Khan Academy


2m read
·Nov 10, 2024

We are told that the first five ionization energies for a third period element are shown below. What is the identity of the element? So pause this video and see if you can figure it out on your own, and it'll probably be handy to have a periodic table of elements.

So before I even look at a periodic table of elements, let's make sure we understand what this table is telling us. This is telling us that if we start with a neutral atom of this mystery element, it would take 578 kilojoules per mole to remove that first electron to turn that atom into an ion with a plus one positive charge.

Then it would take another 1817 kilojoules per mole to remove a second electron, so to make that ion even more positive. After that, it would take another 2745 kilojoules per mole to remove the third electron. Then, to remove the fourth electron, it takes a way larger amount of energy. It takes 11,000 kilojoules per mole, and then the fifth electron takes even more: 14,842 kilojoules per mole.

For the first, second, and third, you do have an increase in ionization energy, but when you go to the fourth, the energy required to remove those is way higher. So to me, these look like you're removing valence electrons, and these look like you're removing core electrons.

One way to think about it is let's look at our periodic table of elements and look for a third period element that has three valence electrons. So we have our periodic table of elements. We want a third period element, so it's going to be in this third row. Which of these has three valence electrons?

Well, sodium has one valence electron, magnesium has two valence electrons, aluminum has three valence electrons. So one way to think about it is that first electron: it's a reasonable ionization energy. Then the second one, a little higher; then the third, a little bit higher than after that. But then the fourth, you're starting to go into the core. You're going to have to take an electron out of that full second energy shell, which takes a lot of energy.

So this is pretty clearly aluminum that is being described.

More Articles

View All
How your brain is working against you
Whether you’ve been aware of it or not, your brain has been telling you a story about your own life. It’s been telling you a story about who you are, what your personality is like, what your strengths and weaknesses are, how likely you are to stick to cer…
Recognition | Vocabulary | Khan Academy
I see you, word Smiths, which is good because the word I’m talking about in this video is recognition. Recog, it’s a noun; it means the act of acknowledging, being aware of, or noticing something. Follow me over to the atmology Zone trademark where I’m g…
Before Free Solo | Edge of the Unknown on Disney+
[SUSPENSEFUL MUSIC] MAN 1: Morocco, it’s off the map. No one would know about it. This was a place where he could test himself, both physically and mentally with a massive amount of climbing. And then, he wanted to free solo one of the big walls at the e…
Justinian and the Byzantine Empire | World History | Khan Academy
In previous videos, we talked about how, as we exit the 4th Century in the 390s, the emperor Theodosius actually splits the Roman Empire. We already had the city of Constantinople being established as a capital of the Empire; that was done by Constantine …
10% Rule of assuming "independence" between trials | Random variables | AP Statistics | Khan Academy
As we go further in our statistical careers, it’s going to be valuable to assume that certain distributions are normal distributions or sometimes to assume that they are binomial distributions. Because if we can do that, we can make all sorts of interesti…
All I’m Offering is the Truth | The Philosophy of the Matrix
The Matrix, a science fiction film created by the Wachowskis, is probably one of the most influential movies ever made. The story starts when computer programmer Thomas Anderson, operating as a hacker under the alias “Neo,” discovers the truth about the w…