yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Identifying an element from successive ionization energies | Khan Academy


2m read
·Nov 10, 2024

We are told that the first five ionization energies for a third period element are shown below. What is the identity of the element? So pause this video and see if you can figure it out on your own, and it'll probably be handy to have a periodic table of elements.

So before I even look at a periodic table of elements, let's make sure we understand what this table is telling us. This is telling us that if we start with a neutral atom of this mystery element, it would take 578 kilojoules per mole to remove that first electron to turn that atom into an ion with a plus one positive charge.

Then it would take another 1817 kilojoules per mole to remove a second electron, so to make that ion even more positive. After that, it would take another 2745 kilojoules per mole to remove the third electron. Then, to remove the fourth electron, it takes a way larger amount of energy. It takes 11,000 kilojoules per mole, and then the fifth electron takes even more: 14,842 kilojoules per mole.

For the first, second, and third, you do have an increase in ionization energy, but when you go to the fourth, the energy required to remove those is way higher. So to me, these look like you're removing valence electrons, and these look like you're removing core electrons.

One way to think about it is let's look at our periodic table of elements and look for a third period element that has three valence electrons. So we have our periodic table of elements. We want a third period element, so it's going to be in this third row. Which of these has three valence electrons?

Well, sodium has one valence electron, magnesium has two valence electrons, aluminum has three valence electrons. So one way to think about it is that first electron: it's a reasonable ionization energy. Then the second one, a little higher; then the third, a little bit higher than after that. But then the fourth, you're starting to go into the core. You're going to have to take an electron out of that full second energy shell, which takes a lot of energy.

So this is pretty clearly aluminum that is being described.

More Articles

View All
How Nothing Founder Carl Pei Built A Multi-Million Dollar Smartphone Brand In Just 2 Years
Today, on the main function, we’re hanging out with Carl, the founder of Nothing. He built a smartphone company that launched two years ago, and in those two years, they’ve gotten to $600 million in annualized revenue. So we’re going to talk about that an…
Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy
Let’s say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we’re curious about is what is the derivative of this with respect to x? What is dy/dx, which we could als…
Safari Live - Day 280 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. So, you can see the beautiful skies; there are clouds still everywhere, and it’s nice and warm at the moment—not too bad. G…
Future Founders Conference for Women Globally
[Music] We are all excited to have you here at our very first Future Founders Conference for Women. We believe that creating a platform where successful women can share their stories and advice is one way to bring about even more successful women-led busi…
Jamie Dimon’s Warning of an Economic Hurricane
This video is sponsored by Seeking Alpha. You can get 12 months of Seeking Alpha premium for just $99 via the link in the description. Is the American banking system truly safe and secure? Yes! I mean, the banks have extraordinary liquidity and extraordi…
Who Is Responsible For Climate Change? – Who Needs To Fix It?
Since the Industrial Revolution, humans have released over 1.5 trillion tons of carbon dioxide or CO₂ into the Earth’s atmosphere. In the year 2019, we were still pumping out around 37 billion more. That’s 50 percent more than the year 2000 and almost thr…