yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How To Make Graphene


2m read
·Nov 10, 2024

Picture this: you are thrown into a dingy room and told, "You can't leave until you have created the thinnest material known to man." Not only that, it must also be the strongest, the best thermal conductor, and as good at conducting electricity as copper. I know, it sounds hopeless. But luckily, you know something about nanotechnology. You know, really really tiny devices and materials that are less than 100 nanometers in size. Of course, I don't have to tell you a nanometer is a billionth of a meter. That's roughly the size of ten atoms.

But how do you create something that tiny? It's time to embrace your inner MacGyver. You're gonna need a pencil, some scotch tape, and a healthy dose of elbow grease. A pencil contains not lead but graphite, which consists of sheets of carbon in a hexagonal lattice. When you write, layers of graphite slide off the tip of the pencil and stick to the paper. Usually, many layers are stacked on top of each other, but once in a while you get a single layer of carbon atoms. And this is called "graphene."

In 2004, Andre Geim and Konstantin Novoselov created graphene using nothing but graphite and scotch tape. They placed a graphite flake onto the tape, folded it in two, and then cleaved the flake in half. They repeated this procedure a number of times and then studied the resulting fragments. To their astonishment, they found some of the pieces were only a single atom thick. This was particularly unexpected because it was thought a single layer of graphite would not be chemically stable, especially at room temperature.

Graphene conducts electrons faster than any other substance at room temperature. This is because of the extraordinarily high quality of the graphene lattice. Scientists are yet to find a single atom out of place in graphene. Since the electrons aren't scattered by defects in the lattice, they go so fast that Einstein's relativity must be used to understand their motion. And this perfect lattice is created by the very strong yet flexible bonds between carbon atoms -- making the substance bendable but harder than diamond.

Graphene is incredibly strong -- if you could balance an elephant on a pencil and support the pencil on graphene, the graphene wouldn't break. Of course, the pencil would. For their discovery, Geim and Novoselov were awarded the Nobel Prize for physics in 2010. And this is only the beginning for graphene. Scientists are hard at work exploiting its unique properties to create thin, transparent, flexible touch screens, smaller, faster, more energy-efficient computers, tough composite materials, and more efficient solar cells.

And now consider this is only one aspect of nanotechnology, so in order to think big, you need first to consider the very small.

More Articles

View All
What's Inside Your Paper Money? | Origins: The Journey of Humankind
The United States is so obsessively protective of its currency that it guards its security right down to the specific fibers that comprise each bill. US currency may be the most counterfeited money in the world. McCrane Paper here in Dalton became the sup…
pH and solubility | Equilibrium | AP Chemistry | Khan Academy
Changing the pH of a solution can affect the solubility of a slightly soluble salt. For example, if we took some solid lead(II) fluoride, which is a white solid, and we put it in some distilled water, the solid is going to reach an equilibrium with the io…
Why Investors Can’t Fix Your Company – Dalton Caldwell and Michael Seibel
Hey, Dalton, you’re a pre-product market fit. Do you have five-year financial projections? That’s a great example of that. Financial projections may be a good idea later stage, but to even ask me if I had financial projections, I was like, what’s a financ…
What Is The Coastline Paradox?
I’ve been driving along Australia’s famous Great Ocean Road. And I’m stopped here near the Twelve Apostles, which are these big sandstone bluffs. Actually, there’s only eight of them left because the others have eroded over time. And erosion is really wha…
15 Places Where The Rich Settle
Have you ever dreamed of becoming neighbors with someone like Rihanna, Drake, or Kim Kardashian, or even Hollywood stars like Tom Hanks? Where do all these people settle once they make it to the one percent club, and how much does it cost to share the air…
Khan Academy "Hamilton" song
How does a website platform educational and non-profit shot in a cramped damp shoebox of a closet as an office built by a Bengali trooper? This product turned out to be the schoolhouse of the future. The not recruit hedge fund suitor without a suit got a …