yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How To Make Graphene


2m read
·Nov 10, 2024

Picture this: you are thrown into a dingy room and told, "You can't leave until you have created the thinnest material known to man." Not only that, it must also be the strongest, the best thermal conductor, and as good at conducting electricity as copper. I know, it sounds hopeless. But luckily, you know something about nanotechnology. You know, really really tiny devices and materials that are less than 100 nanometers in size. Of course, I don't have to tell you a nanometer is a billionth of a meter. That's roughly the size of ten atoms.

But how do you create something that tiny? It's time to embrace your inner MacGyver. You're gonna need a pencil, some scotch tape, and a healthy dose of elbow grease. A pencil contains not lead but graphite, which consists of sheets of carbon in a hexagonal lattice. When you write, layers of graphite slide off the tip of the pencil and stick to the paper. Usually, many layers are stacked on top of each other, but once in a while you get a single layer of carbon atoms. And this is called "graphene."

In 2004, Andre Geim and Konstantin Novoselov created graphene using nothing but graphite and scotch tape. They placed a graphite flake onto the tape, folded it in two, and then cleaved the flake in half. They repeated this procedure a number of times and then studied the resulting fragments. To their astonishment, they found some of the pieces were only a single atom thick. This was particularly unexpected because it was thought a single layer of graphite would not be chemically stable, especially at room temperature.

Graphene conducts electrons faster than any other substance at room temperature. This is because of the extraordinarily high quality of the graphene lattice. Scientists are yet to find a single atom out of place in graphene. Since the electrons aren't scattered by defects in the lattice, they go so fast that Einstein's relativity must be used to understand their motion. And this perfect lattice is created by the very strong yet flexible bonds between carbon atoms -- making the substance bendable but harder than diamond.

Graphene is incredibly strong -- if you could balance an elephant on a pencil and support the pencil on graphene, the graphene wouldn't break. Of course, the pencil would. For their discovery, Geim and Novoselov were awarded the Nobel Prize for physics in 2010. And this is only the beginning for graphene. Scientists are hard at work exploiting its unique properties to create thin, transparent, flexible touch screens, smaller, faster, more energy-efficient computers, tough composite materials, and more efficient solar cells.

And now consider this is only one aspect of nanotechnology, so in order to think big, you need first to consider the very small.

More Articles

View All
Innovation Requires Decentralization and a Frontier
Innovation requires a couple of things. One of the things that it seems to require is decentralization. I don’t think it’s a coincidence that the Athenian city-states, the Italian city-states, or even the United States, when it was more free-form and invo…
Khan Lab School
Hi everyone, Sal Khan here. I just wanted to tell y’all that we’ve reached kind of several really cool milestones at Khan Lab School, which you can learn more about at khanlabschool.org or kls.org. A lot of folks are surprised to hear that I started a ph…
The 5 Golden Rules of Real Estate Investing
What’s up, you guys? It’s Graham here. So I’ll just get right into it. These are the five real estate investing tips to live by and keep in mind. And this is coming from somebody who owns five investment properties already and someone who’s been in real e…
The Sea Otter's Enchanted Forest | America's National Parks
Just offshore, the shallow coastal waters are also a refuge for marine mammals, such as the sea lions that hang out on the rocks or hunt beneath the sea. Here, in their own enchanted forest, the kelp beds are several stories deep. [Music] There are seals…
How Fish Eat (in SLOW MOTION!) - Smarter Every Day 118
Hey it’s me Destin, welcome back to Smarter Every Day. So as dads, when you go fishing you spend a lot of time thinking about how to get the fish to bite, but you don’t really think about how mechanically the fish do the bite. Does that make any sense? So…
Ooshma Garg: What are some of the challenges you face as the CEO of your startup?
Okay, um, in the beginning one of the highs is just that you’re constantly innovating. Like, that 24⁄7 maker time is very precious to me. My contrast now, my day is like full of meetings. It’s like meetings, meetings, meetings, meetings, and then dinners.…