yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How To Make Graphene


2m read
·Nov 10, 2024

Picture this: you are thrown into a dingy room and told, "You can't leave until you have created the thinnest material known to man." Not only that, it must also be the strongest, the best thermal conductor, and as good at conducting electricity as copper. I know, it sounds hopeless. But luckily, you know something about nanotechnology. You know, really really tiny devices and materials that are less than 100 nanometers in size. Of course, I don't have to tell you a nanometer is a billionth of a meter. That's roughly the size of ten atoms.

But how do you create something that tiny? It's time to embrace your inner MacGyver. You're gonna need a pencil, some scotch tape, and a healthy dose of elbow grease. A pencil contains not lead but graphite, which consists of sheets of carbon in a hexagonal lattice. When you write, layers of graphite slide off the tip of the pencil and stick to the paper. Usually, many layers are stacked on top of each other, but once in a while you get a single layer of carbon atoms. And this is called "graphene."

In 2004, Andre Geim and Konstantin Novoselov created graphene using nothing but graphite and scotch tape. They placed a graphite flake onto the tape, folded it in two, and then cleaved the flake in half. They repeated this procedure a number of times and then studied the resulting fragments. To their astonishment, they found some of the pieces were only a single atom thick. This was particularly unexpected because it was thought a single layer of graphite would not be chemically stable, especially at room temperature.

Graphene conducts electrons faster than any other substance at room temperature. This is because of the extraordinarily high quality of the graphene lattice. Scientists are yet to find a single atom out of place in graphene. Since the electrons aren't scattered by defects in the lattice, they go so fast that Einstein's relativity must be used to understand their motion. And this perfect lattice is created by the very strong yet flexible bonds between carbon atoms -- making the substance bendable but harder than diamond.

Graphene is incredibly strong -- if you could balance an elephant on a pencil and support the pencil on graphene, the graphene wouldn't break. Of course, the pencil would. For their discovery, Geim and Novoselov were awarded the Nobel Prize for physics in 2010. And this is only the beginning for graphene. Scientists are hard at work exploiting its unique properties to create thin, transparent, flexible touch screens, smaller, faster, more energy-efficient computers, tough composite materials, and more efficient solar cells.

And now consider this is only one aspect of nanotechnology, so in order to think big, you need first to consider the very small.

More Articles

View All
The Truth About Toilet Swirl - Northern Hemisphere
Hey it’s me Destin. Welcome back to Smarter Every Day. Here’s the deal. I’ve created a video in the northern hemisphere and Derek from Veritasium has created one in the south. You have to synchronize these two videos in order for this to make any sense, b…
See How NASA Helped An Artist Create Stunning Drawings of Glaciers | Short Film Showcase
[Music] I wear any brand. I wear glasses like wear nostril filters or not breathing. I mean, not when there’s a camera on me. [Music] I’m an artist. I draw large-scale landscape drawings that document Earth’s changing climate. I’m so moved personally by t…
The Future of the Channel, and You
Good morning, internet. I came out here to write and to research, and to think about the channel and its evolution. The Staten Island video, for example, started life as part of the background reading for the Statue of Liberty video. Originally planned to…
Relative adverbs | The parts of speech | Grammar | Khan Academy
Hey Grians! Today we’re going to talk about three of the relative adverbs in English, which are where, when, and why. And this over here is Peggy the Dragon. We’re going to use the story of Peggy the Dragon in order to figure out how to use these relative…
Analog vs. digital signals | Waves | Middle school physics | Khan Academy
In this video, we’re going to think about analog versus digital signals. One way to think about the difference is an analog signal is trying to reproduce exactly, in some type of a signal, what is going on, while a digital signal is converting it usually …
Sexual and asexual reproduction | Middle school biology | Khan Academy
The planet we live on is full of life and has been for billions of years. Living things on Earth have existed for as long as they have because life found a way to create life. Sounds crazy, right? To put it another way, living things found ways to reprodu…