yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Partial sums: formula for nth term from partial sum | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Partial sum of the series we're going from one to infinity summing it up of a sub n is given by, and they tell us the formula for the sum of the first n terms. They say write a rule for what the actual nth term is going to be.

Now to help us with this, let me just create a little visualization here. So if I have a sub 1 plus a sub 2 plus a sub 3, and I keep adding all the way to a sub n minus one plus a sub n, this whole thing, this whole thing that I just wrote out, that is sub sub n. This whole thing is s sub n, which is equal to n + 1 over n + 10.

Now, if I want to figure out a sub n, which is the goal of this exercise, well, I could subtract out the sum of the first n minus one terms. So I could subtract out this, so that is s sub n minus one. And what would that be equal to? Well, wherever we see an n, we'd replace with an n minus one, so it would be n plus 1 over n - 1 + 10, which is equal to n over n + 9.

So if you subtract the red stuff from the blue stuff, all you're going to be left with is the thing that we want to solve for. You're going to be left with a sub n. So we could write down a sub n is equal to s sub n minus s sub n minus one. Or we could write that as equal to this stuff.

So this is n + 1 over n + 10 minus n over n + 9. And this by itself, this is a rule for a sub n. But we could combine these terms, add these two fractions together, and this is actually going to be the case for n greater than one. For n equals 1, s sub one is going to be, well, you can just say a sub one is going to be equal to s sub one.

But then for any other n, we could use this right over here. And if we want to simplify this, well, we can add these two fractions. We can add these two fractions by having a common denominator. So let's see, if we multiply the numerator and denominator here by n + 9, we are going to get so this is equal to n + 1 * n + 9 over n + 10 * n + 9.

And from that, we are going to subtract, let's multiply the numerator and the denominator here by n + 10. So we have n * n + 10 over n + 9 * n + 10.

n + 9 * n + 10, and what does that give us? So let's see, if we simplify up here, we're going to have this is n^2 + 10n + 9, that's that. And then this right over here is n^2 + oh, this is n^2 + 10n, doing that red color, so this is n^2 + 10n.

And remember we're going to subtract this, and so, and we are close to deserving a drum roll. A sub n is going to be equal to our denominator right over here is n + 9 * n + 10, and we're going to subtract the red stuff from the blue stuff.

So you subtract an n from an n squared, those cancel out. Subtract a 10n from a 10n, those cancel out, and you're just left with that blue nine. So there you have it, we've expressed, we've written a rule for a sub n for n greater than one.

More Articles

View All
Why Dyslexia Might Just Be a SUPERPOWER | Kevin O'Leary
[Music] Well, when I was growing up, I was born from immigrants: an Irish and Lebanese father, Lily’s mother. By the time I hit seven, it was clear I had some really big problems in math and reading. Going back to the education, I had a really bad case o…
Tesla : The Ponzi Factor
When we think about the stock market, we think about money, the finance industry, businesses, and making money from investing in successful businesses. The belief is investing in successful businesses is what leads to investment profits, and there’s a dir…
13 Ways To RECOGNIZE ENVY And FALSEHOOD In Others | STOICISM
Every one of us at some point in our lives faces moments where everything we’ve worked for seems to crumble before our eyes. It’s in these moments, amidst the chaos and the disappointment, that the ancient wisdom of Stoicism can light our way. Today, we d…
Multiplying rational expressions | Precalculus | Khan Academy
So what I have here is an expression where I’m multiplying rational expressions, and we want to do this multiplication and then reduce to the lowest term. So if you feel so inspired, I encourage you to pause this video and see if you can have a go at that…
Ending Your Inner Civil War (Carl Jung's Psychology)
What drives people to war with themselves is the suspicion or the knowledge that they consist of two persons in opposition to one another. The conflict may be between the sensual and the spiritual man, or between the ego and the shadow. Carl Jung, Swiss …
13 SIGNS YOU MIGHT BE UNDERVALUING YOURSELF WITHOUT REALIZING IT | STOICISM INSIGHTS
Imagine just for a moment that the most powerful tool for a meaningful, fulfilled life isn’t something you can buy, earn, or be given by others. It’s already within you, waiting to be discovered and harnessed. This isn’t just a thought experiment; it’s a …