yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to subtract mixed numbers that have unlike denominators | Fractions | Pre-Algebra | Khan Academy


2m read
·Nov 10, 2024

Let's try to evaluate 7 and 6 9ths - 3 and 25ths.

So, like always, I like to separate out the whole number parts from the fractional parts. This is the same thing as 7 + 6/9 - 3 - 25/100. The reason why I'm saying -3 and -25/100 is this is the same thing as -3 + 25/100.

So, you distribute the negative sign: you're subtracting a 3 and then you're subtracting the 25/100. Now we can worry about the whole number parts: 7 - 3. Well, 7 minus 3 is going to give us 4. So that's going to give us 4.

Then we're going to have 6/9 - 25/100. Let me think about what 6/9 - 25/100 is. We're going to have to find a common denominator. The least common multiple of 9 and 100 is going to be 900.

Now, they have no common factors, so it's going to be over 900. To go from 9 to 900, I have to multiply by 100. So, I'm going to have to multiply the numerator by 100: 6 * 100 is 600.

To go from 100 to 900, I had to multiply by 9, so I have to multiply the numerator by 9 if I don't want to change the value: 25 * 9 is 225.

So, 600/900 - 225/900 is going to be something over 900. 600 minus 225 is 375. So this is, if I subtract these two fractions right over here, I get 375/900.

So it's 4 + 375/900. If we wanted to write it as a mixed number, this is equal to 4 and 375/900, but we're not done yet.

We can simplify this further: 375 and 900 have common factors. They are both divisible by 75. So, we can say that this is actually...

If we divide the numerator by 75 and the denominator by 75, we end up with 4 and 375/75 is 5, and 900/75 is 12.

So we have 4 and 5/12. Actually, we're done. These two can't be simplified anymore: 4 and 5/12.

More Articles

View All
Ponzi Factor | V-Log 1 | Tesla and Market Crash
Hey y’all doing! This time my first V log, a very impromptu V log. So it’s Sunday morning, July 29th, and I apologize for the casualness, but there are some ideas that my friends have been bugging me about to get out there because it’s gonna be a big week…
BEST IMAGES OF THE WEEK: IMG! episode 5
The cheapest way to make your own swimming pool and a bus who thinks he’s the Kool-Aid man. It’s episode five of IMG. We begin the day with hoodies that zip up to make you look like Captain America, a ninja, Batman, or Boba Fett. Last week, BuzzFeed gave…
Why You Shouldn't Copy Your Tech Idols
Most mere mortals out in the world need to do step one and can’t skip to step two, even though step two sounds cooler. Yes, beer myrtles, including Elon, including literally Elon himself, was a mere mortal. All right, this is Dalton plus Michael, and toda…
Dark Web: The Unseen Side of The Internet
The Internet has changed everything, from the way we work to the way we play to the way we live. It seems that there’s a corner of the internet for everyone; despite what interests you have, despite what your beliefs are, there’s someone or something out …
Simplifying resistor networks | Circuit analysis | Electrical engineering | Khan Academy
We’ve learned about series and parallel resistors. We’ve learned how to simplify series and parallel resistors into an equivalent resistor. Just to review, for the series resistor, our series equivalent ( R_{series} ) is equal to the sum of resistors in …
How To Terraform Venus (Quickly)
Leaving Earth to find new homes in space is an old dream of humanity and will sooner or later be necessary for our survival. The planet that gets the most attention is Mars, a small, toxic, and energy-poor planet that just about seems good enough for a co…