yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to subtract mixed numbers that have unlike denominators | Fractions | Pre-Algebra | Khan Academy


2m read
·Nov 10, 2024

Let's try to evaluate 7 and 6 9ths - 3 and 25ths.

So, like always, I like to separate out the whole number parts from the fractional parts. This is the same thing as 7 + 6/9 - 3 - 25/100. The reason why I'm saying -3 and -25/100 is this is the same thing as -3 + 25/100.

So, you distribute the negative sign: you're subtracting a 3 and then you're subtracting the 25/100. Now we can worry about the whole number parts: 7 - 3. Well, 7 minus 3 is going to give us 4. So that's going to give us 4.

Then we're going to have 6/9 - 25/100. Let me think about what 6/9 - 25/100 is. We're going to have to find a common denominator. The least common multiple of 9 and 100 is going to be 900.

Now, they have no common factors, so it's going to be over 900. To go from 9 to 900, I have to multiply by 100. So, I'm going to have to multiply the numerator by 100: 6 * 100 is 600.

To go from 100 to 900, I had to multiply by 9, so I have to multiply the numerator by 9 if I don't want to change the value: 25 * 9 is 225.

So, 600/900 - 225/900 is going to be something over 900. 600 minus 225 is 375. So this is, if I subtract these two fractions right over here, I get 375/900.

So it's 4 + 375/900. If we wanted to write it as a mixed number, this is equal to 4 and 375/900, but we're not done yet.

We can simplify this further: 375 and 900 have common factors. They are both divisible by 75. So, we can say that this is actually...

If we divide the numerator by 75 and the denominator by 75, we end up with 4 and 375/75 is 5, and 900/75 is 12.

So we have 4 and 5/12. Actually, we're done. These two can't be simplified anymore: 4 and 5/12.

More Articles

View All
KNOWLEDGE! --- LEANBACK #7
Hello, Vsauce. Michael here, and today I have a brand new episode of Vsauce Leanback, a playlist that I host made out of awesome videos from all over YouTube. The theme for this one is stuff I didn’t know last week, but now I do. It’s fun and you can begi…
Sine of time
Now I want to introduce a new idea, and that is the idea of voltage or current, some electrical signal being a function of time: cosine of Omega T. So here what we’re doing is we’re introducing time as the argument to a cosine, and time is that stuff tha…
Alcohol 101 | National Geographic
[Music] Alcohol has been a component of human culture for thousands of years. From its prehistoric inception to its many uses in modern times, alcohol has had countless effects on our cultures and our lives. Throughout the course of human history, alcohol…
My thoughts on Robert Kiyosaki
What’s up you guys, it’s Graham here. So if you’re anything like me, you’ve noticed an unusually high amount of Robert Kiyosaki videos being recommended right now on YouTube. Like, it seems as though every single time I open up the homepage, there’s a fre…
Nat Geo's Aaron Huey's Most Epic Photos | National Geographic
That’s how I actually get my work. It’s not because I know how to take pictures. It’s because I only wear gold shoes when I come into the National Geographic offices. (classical music) My name’s Aaron Huey. I’m a National Geographic photographer. A lot of…
A day in my life.
This is a day in the life of a private jet broker. I get into the office at six a.m., three hours before my team. I like getting in early to catch up on work and establish my plan of action for the rest of the day. I then call my clients in Asia, do email…