yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to subtract mixed numbers that have unlike denominators | Fractions | Pre-Algebra | Khan Academy


2m read
·Nov 10, 2024

Let's try to evaluate 7 and 6 9ths - 3 and 25ths.

So, like always, I like to separate out the whole number parts from the fractional parts. This is the same thing as 7 + 6/9 - 3 - 25/100. The reason why I'm saying -3 and -25/100 is this is the same thing as -3 + 25/100.

So, you distribute the negative sign: you're subtracting a 3 and then you're subtracting the 25/100. Now we can worry about the whole number parts: 7 - 3. Well, 7 minus 3 is going to give us 4. So that's going to give us 4.

Then we're going to have 6/9 - 25/100. Let me think about what 6/9 - 25/100 is. We're going to have to find a common denominator. The least common multiple of 9 and 100 is going to be 900.

Now, they have no common factors, so it's going to be over 900. To go from 9 to 900, I have to multiply by 100. So, I'm going to have to multiply the numerator by 100: 6 * 100 is 600.

To go from 100 to 900, I had to multiply by 9, so I have to multiply the numerator by 9 if I don't want to change the value: 25 * 9 is 225.

So, 600/900 - 225/900 is going to be something over 900. 600 minus 225 is 375. So this is, if I subtract these two fractions right over here, I get 375/900.

So it's 4 + 375/900. If we wanted to write it as a mixed number, this is equal to 4 and 375/900, but we're not done yet.

We can simplify this further: 375 and 900 have common factors. They are both divisible by 75. So, we can say that this is actually...

If we divide the numerator by 75 and the denominator by 75, we end up with 4 and 375/75 is 5, and 900/75 is 12.

So we have 4 and 5/12. Actually, we're done. These two can't be simplified anymore: 4 and 5/12.

More Articles

View All
How adding your phone number and 2-factor authentication helps protect your account
All right, Guemmy, so sometimes sites ask for, like, a phone number for security purposes, and I’m always actually afraid to give my phone number. One, I just don’t want random people calling me all the time. But how do you think about that? When is it va…
Doing donuts in $150k+ cars…on the front lawn
[Music] Let me show my hair first. What’s up you guys? Brendan. So, I’m so excited this morning! I am on my way to Frank Out, he’s OC, a private car. If it’s working, backyard. He has an insanely cool house in the middle of Los Angeles, and the inside ya…
Simulations and repetition | Intro to CS - Python | Khan Academy
I’m running a coin flip experiment and I want to find out how likely each outcome is: heads or tails. So I flip a coin once, twice, 100 times. Once I’ve repeated that experiment enough times, I see that about 50% of my flips are heads and 50% are tails. …
Making an Undercover Drug Bust | Locked Up Abroad: Declassified
90 kilos of cocaine were found in the trunk of a vehicle at a border patrol checkpoint. The markings of the cocaine packages were the scorpion. This was the label for Amado and the Juarez cartel. If this guy was connected to the Juarez cartel, I knew this…
Circadian Blues | National Geographic
A suburban home here looks like cunning predators who will not rest until they have driven sleep into extinction. They have evolved to emit a blue light that is remarkably similar to daylight. Humans, attracted by the light, soon find themselves mesmerize…
Adventure Photography: 4 Tips to Get an Epic Shot | Get Out: A Guide to Adventure
Hi, my name is Keith Linski. I’m an adventure photographer and filmmaker. Today, I’m going to talk a little bit about essential things I bring in the field for every shoot. There are so many great apps that make photography so much easier out in the fiel…