yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Proof of the derivative of cos(x) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What I'm going to do in this video is make a visual argument as to why the derivative with respect to X of cosine of x is equal to sin of X. We're going to base this argument on a previous proof we made that the derivative with respect to X of sin of X is equal to cosine of x. So, we're going to assume this over here. I encourage you to watch that video; that's actually a fairly involved proof that proves this. But if we assume this, I'm going to make a visual argument that this right over here is true: that the derivative with respect to X of cosine of x is negative sin of X.

So, right over here, we see s of X in red, and we see cosine of x in blue. We're assuming that this blue graph is showing the derivative, the slope of the tangent line for any x value of the red graph. We've gotten an intuition for that in previous videos. Now, what I'm going to do next is I'm going to shift both of these graphs to the left by pi over two. Shift it to the left by pi over two, and I'm also going to shift the blue graph to the left by Pi / 2.

And so, what am I going to get? Well, the blue graph is going to look like this one right over here. If it was cosine of x up here, we can now say that this is equal to Y is equal to sine of x + pi / 2. This is the blue graph cosine of x shifted to the left by Pi / 2, and this is y is equal to S of x + pi / 2.

Now, the visual argument is all I did is I shifted both of these graphs to the left by Pi / 2, so it should still be the case that the derivative of the red graph is the blue graph. So, we should still be able to say that the derivative with respect to X of the red graph s of x + pi / 2, that that is equal to the blue graph, that that is equal to cosine of x + Pi / 2.

Now, what is sin of x + Pi / 2? Well, that's the same thing as cosine of x. You can see this red graph is the same thing as cosine of x; we know that from our trig identities. You could also see it intuitively or graphically just by looking at these graphs. And what is sine of x + pi / 2? Well, once again, from our trig identities, we know that that is the exact same thing as negative sin of X.

So there you have it: the visual argument just starts with this knowledge, shifts both of these graphs to the left by Pi / 2, and it should still be true that the derivative with respect to X of sine of x + Pi / 2 is equal to cosine of x + Pi / 2. This is the same thing as saying what we have right over here. So now we should feel pretty good; we proved this in a previous video, and we have a very strong visual argument for this in this for cosine of x in this video.

More Articles

View All
Polynomials intro | Mathematics II | High School Math | Khan Academy
Let’s explore the notion of a polynomial. So, this seems like a very complicated word, but if you break it down, it’ll start to make sense, especially when we start to see examples of polynomials. So, the first part of this word, let me underline it: we …
Luring in the Coconut Crab | Primal Survivor
In the South Pacific, locals have a basic but effective method to catch their prey: the baited stick. First, we have to collect U coconuts—dry ones. Yeah, let’s make a sharp steak, huh? The coconut aroma will waft across the island, and with any luck, we’…
One Step at a Time | Life Below Zero
Long walk on a cold day. Thing I’ve learned about injuries is listen to your body. If your body’s hurting, it’s trying to tell you something. In this case right here, this leg’s trying to tell me not to use it. Just got to take it easy, take it one step …
Seth Klarman's Warning for "The Everything Bubble"
The first thing is, we’ve been in an everything bubble. I think that a lot of money has flowed into virtually everything. You’ve had speculation during that bubble in all kinds of things from crypto to meme stocks to SPACs. That day is Seth Klam, and he …
Facebook Freebooting - Smarter Every Day 128
Hey, it’s me Destin. Welcome back to Smarter Every Day. I want to do something a little bit different today; let’s start with a story. Once there was a kingdom where wealth was determined by what sheep you owned. There was a rich man who had many, many s…
Tom Blomfield: How I Created Two Billion-Dollar Fintech Startups
When you look around you at all of the structures in place, like the physical buildings, the transportation system, the laws and rules for society, all of these things were created by people. Everyone has a choice to either live in that world and merely f…