yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification using second derivative: maximum point | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're told that given that h prime of negative four is equal to zero, what is an appropriate calculus-based justification for the fact that h has a relative maximum at x is equal to negative four?

So, right over here we actually have the graph of our function h. This is the graph y is equal to h of x, and we don't have graphed the first derivative, but we do have graphed the second derivative right here in this orange color, h prime prime.

So they're telling us, given that h prime of negative four is equal to zero. So that's saying that given that the first derivative at x equals negative four is equal to zero, and you can see that the slope of the tangent line when x is equal to negative four does indeed equal zero.

So, given that, what is a calculus-based—let me underline that—a calculus-based justification for the fact that h has a relative maximum at x equals negative four?

So this first one says that the second derivative at x equals negative 4 is negative. Now, what does that tell us? If the second derivative is negative, that means that the first derivative is decreasing, which is another way of saying that we are dealing with a situation where, at least at x equals negative 4, we are concave downwards.

Which means that the general shape of our curve is going to look something like this around x equals negative 4. If the slope at x equals negative 4 is 0, well that tells us that yes, we indeed are dealing with a relative maximum point.

If the second derivative of that point was positive, then we would be concave upwards. And then if our derivative is 0 there, we'd say, okay, that's a relative minimum point. But this is indeed true: the second derivative is negative at x equals negative 4, which means we are concave downwards.

This means that we are an upside-down u, and that point where the derivative is 0 is indeed a relative maximum. So let me—sir, that is the answer, and we're done!

But let's just rule out the other ones. h increases before x equals negative four; that is indeed true. Before x equals negative four, we are increasing, and h decreases after it. That is true, and that is one rationale for thinking that, hey, we must have a maximum point assuming that our function is continuous at x equals negative four.

So this is true; it is a justification for a relative maximum, but it is not calculus-based, and so that's why we can rule this one out.

The second derivative has a relative minimum at x equals negative 4. Well, it does indeed seem to be true; there's a relative minimum there, but that's not a justification for why this is why h of negative 4, or why we have a relative maximum at x equals negative 4.

For example, you could have a relative minimum in your second derivative, but your second derivative could still be positive there. So what if the second derivative was like that? That would still be a relative minimum, but if it was positive at that point, then you would be concave upwards, which would mean that at x equals negative four, your original function wouldn't have a maximum point—it would have a minimum point.

And so just a relative minimum isn't enough in order to know that you are dealing with a relative maximum. You would have to know that the second derivative is negative there. Now, this fourth choice: h prime prime is concave up.

It does indeed look like the second derivative is concave up, but that by itself does not justify that the original function is concave up. For example, well, I could use this example right here. This is a potential second derivative that is concave upwards, but it is positive the entire time.

If your second derivative is positive the entire time, that means that your first derivative is increasing the entire time, which means that your original function is going to be concave upwards the entire time. And so if you're concave upwards the entire time, then you would not have a relative maximum at x equals negative four.

So we would rule that one out as well.

More Articles

View All
Lecture 14 - How to Operate (Keith Rabois)
So I’m going to talk about how to operate. I’ve watched some of the prior classes, and I’m going to assume that you’ve already sort of hired a bunch of relentlessly resourceful people, that you built a product that at least some people love, that you prob…
My Tenant Just Trashed My House | The Aftermath
What’s up, you guys? It’s Graham here. So, this is certainly not a video that I wanted to make, but as somebody who’s been in the real estate industry for 14 years, it’s only a matter of time until eventually you come across a situation like this. So, I’…
Thinking like a historian | The historian's toolkit | US History | Khan Academy
I think one of the most underrated skills for learning history is learning how to think like a historian. And what do I mean by thinking like a historian? Does that mean that you have to go out and buy a tweed jacket with some elbow patches and maybe grow…
Geometric distribution mean and standard deviation | AP Statistics | Khan Academy
So let’s say we’re going to play a game where on each person’s turn they’re going to keep rolling this fair six-sided die until we get a one, and we just want to see how many rolls does it take. So let’s say we define some random variable, let’s call it X…
How Laser Tattoo Removal Works - Smarter Every Day 123
Hey, it’s me Destin. Welcome back to Smarter Every Day. So, in the last video, we talked about what it was like to get a tattoo in slow motion. But this time, we’re gonna talk about the removal process. It’s way more complicated. It involves physics like …
Safari Live - Day 202 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon, ladies and gentlemen, and welcome again to another afternoon sunset safari with us here in June and the Sab…