yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Tangram Paradoxes


less than 1m read
·Nov 10, 2024

I can take the seven pieces of a tangram and arrange them into a shape called the monk, but I can take the same seven pieces and arrange them into a monk with no feet.

Wait, what? Where'd the foot go? How can these be made of the same pieces? Is it magic? No, it's a Tang G Paradox, which is a kind of dissection fallacy.

In my Bonet Tarski video, I showed an example where we fail to notice how the parts have changed, so we're surprised when the whole does. But in this kind, we fail to notice exactly how the whole has changed, so we're surprised to find that the parts haven't.

Illusions like these are caused by the fact that a concentrated area of missing material is much more noticeable than an equal but diffused increase everywhere else that compensates for it.

Both of these figures have the same area. The one with no feet has a slightly larger body, but the area of just the feet spread out amongst an entire arrangement... well, it's kind of hard to see.

Sometimes the things we don't notice can be quite significant.

More Articles

View All
Writing equilibrium constant and reaction quotient expressions | AP Chemistry | Khan Academy
The equilibrium constant is symbolized by the letter K, and the equilibrium constant tells us about the relative concentrations of reactants and products at equilibrium. Let’s say we have a hypothetical reaction where reactants A and B turn into products…
Pearl Harbor Hero Returns Home After 75 Years in an Unknown Grave | National Geographic
I do understand where people think that you should not disturb a grave. But I think it’s a personal decision for the family, and for our family, it was the right decision to get him out of there. My grandfather died at Pearl Harbor, but it was not where h…
Area model for multiplying polynomials with negative terms
In previous videos, we’ve already looked at using area models to think about multiplying expressions, like multiplying x plus seven times x plus three. In those videos, we saw that we could think about it as finding the area of a rectangle, where we could…
HOT BOBAS! -- IMG! #34
Cacti are perpetual victims and kitten heart. It’s episode 34 of IMG! When these guys get busy, you get this. And when Adobe adds the force to Photoshop, you get Adobe WanKenobi. If other brands did the same we’d have Jedi - Do or do not; Sith puma; Hunt …
Nature's Incredible ROTATING MOTOR (It’s Electric!) - Smarter Every Day 300
Hey, it’s me, Destin. Welcome back to Smarter Every Day. This is the 300th episode, which is cool. Thank you so much for watching. I was on the internet the other day. I was just scrolling on my phone. I was probably wasting too much time. But I came acr…
Beauty Through the Microscope: Bugs Like You’ve Never Seen Them Before | Short Film Showcase
[Music] When I first started the project, I started it at home. First specimens of photographs my boy caught for me in the garden. The macro photography suited my work and lifestyle at the time. My commercial work is portrait photography, essentially, but…