yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Tangram Paradoxes


less than 1m read
·Nov 10, 2024

I can take the seven pieces of a tangram and arrange them into a shape called the monk, but I can take the same seven pieces and arrange them into a monk with no feet.

Wait, what? Where'd the foot go? How can these be made of the same pieces? Is it magic? No, it's a Tang G Paradox, which is a kind of dissection fallacy.

In my Bonet Tarski video, I showed an example where we fail to notice how the parts have changed, so we're surprised when the whole does. But in this kind, we fail to notice exactly how the whole has changed, so we're surprised to find that the parts haven't.

Illusions like these are caused by the fact that a concentrated area of missing material is much more noticeable than an equal but diffused increase everywhere else that compensates for it.

Both of these figures have the same area. The one with no feet has a slightly larger body, but the area of just the feet spread out amongst an entire arrangement... well, it's kind of hard to see.

Sometimes the things we don't notice can be quite significant.

More Articles

View All
Ordering rational numbers compared to an average | Grade 8 (TX) | Khan Academy
We’re told four friends completed a 5 km run. Their average time to complete the run was 24 minutes. To compare their times, they created a table that shows the difference between each person’s time and the average time, with negative numbers representing…
7 Stoic principles to MASTER THE ART OF NOT CARING AND LETTING GO | Stoicism
STOICISM INSIGHTS Presents “7 Stoic principles to MASTER THE ART OF NOT CARING AND LETTING GO.” Listen up, fellow STOICS of the digital age. You’ve stumbled upon a golden treasure. And no, I’m not talking about the latest viral video or meme. If you’ve e…
Calculating internal energy and work example | Chemistry | Khan Academy
In this video, we’re going to do an example problem where we calculate internal energy and also calculate pressure-volume work. So we know the external pressure is 1.01 * 10^5 Pascals, and our system is some balloon. Let’s say it’s a balloon of argon gas.…
I Just Lost $1.5 Million In Stocks
What’s up guys, it’s Graham here. So let’s be real, everyone always talks about their wins or how they knew and predicted that some obscure event was going to happen in the future. But in a market like this, I think it’s really important that we talk abou…
❄️🇬🇧 London Snow Day 🇬🇧❄️
Wow, it finally snowed again in London! A snow day not to be squandered inside. I’m supposed to be working today, but does daily vlogging count? I’m not a daily vlogger, but I think if I make a vlog, that can totally count. Come join me as I do nothing m…
Fibonnaci on a Marble-Powered Computer
This is the Turing Tumble. It is a marble powered computer. So sorry nerds, it’s kind of a jock thing now. What you are watching is my solution to a puzzle posted on their forums. I have programmed the machine to output marbles according to the Fibonacci…