yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Proving triangle congruence | Congruence | High school geometry | Khan Academy


3m read
·Nov 10, 2024

What I would like to do in this video is to see if we can prove that triangle DCA is congruent to triangle BAC.

Pause this video and see if you can figure that out on your own.

All right, now let's work through this together. So let's see what we can figure out. We see that segment DC is parallel to segment AB; that's what these little arrows tell us. You can view this segment AC as something of a transversal across those parallel lines. We know that alternate interior angles would be congruent. So we know, for example, that the measure of this angle is the same as the measure of this angle, or those angles are congruent.

We also know that both of these triangles, both triangle DCA and triangle BAC, they share this side, which by reflexivity is going to be congruent to itself. So in both triangles, we have an angle and a side that are congruent. But can we figure out anything else?

Well, you might be tempted to make a similar argument, thinking that this is parallel to that because it looks parallel, but you can't make that assumption just based on how it looks. If you did know that, then you would be able to make some other assumptions about some other angles here and maybe prove congruency. But it turns out, given the information that we have, we can't just assume that because something looks parallel or because something looks congruent, that they are.

So based on just the information given, we actually can't prove congruency. Now, let me ask you a slightly different question. Let's say that we did give you a little bit more information. Let's say we told you that the measure of this angle right over here is 31 degrees and the measure of this angle right over here is 31 degrees. Can you now prove that triangle DCA is congruent to triangle BAC?

So let's see what we can deduce now. Well, we know that AC is in both triangles, so it's going to be congruent to itself. And let me write that down. We know that segment AC is congruent to segment AC. It sits in both triangles, and this is by reflexivity, which is a fancy way of saying that something is going to be congruent to itself.

Now, we also see that AB is parallel to DC, just like before, and AC can be viewed as part of a transversal. So we can deduce that angle CAB—let me write this down, actually doing a different color—we can deduce that angle CAB is congruent to angle ACD because they are alternate interior angles where a transversal intersects two parallel lines.

So just to be clear, this angle, which is CAB, is congruent to this angle, which is ACD. And so now we have two angles and a side, two angles and a side that are congruent. So we can now deduce by the angle-angle-side postulate that the triangles are indeed congruent.

So we now know that triangle DCA is indeed congruent to triangle BAC because of angle-angle-side congruency, which we've talked about in previous videos. And just to be clear, sometimes people like the two-column proofs. I can make this look a little bit more like a two-column proof by saying these are my statements, and this is my rationale right over here.

And we're done.

More Articles

View All
Perverted Analogy Fallacy: look out for it.
So a person might make a claim like, “Uh, taxation is just because those being taxed have given, uh, implicit consent by continuing to live in a territory which is subject to the tax.” Um, and you’d like to get them to examine whether or not this idea of…
Welcome to Twinsburg: Home of the World’s Largest Twin Festival | Short Film Showcase
A mirror image, so I was like, “Here, he a million,” and I have in the equity at the exact time and freckles. But he’s right-handed or left-handed, so mirror image. And was Millersville originally, and then Aaron and Moses were twins, and they donated fou…
Current through resistor in parallel: Worked example | DC Circuits | AP Physics 1 | Khan Academy
So we have an interesting circuit here. The goal of this video is to figure out what is the current that flows through the 6 ohm resistor. Pause this video and see if you can work through it. The way that I am going to tackle it is first simplify the cir…
Self-destructive? It could be your death drive…
Daedalus, a master craftsman and architect of the labyrinth of Crete, once created wings made from feathers and wax that would help him and his son Icarus escape their imprisonment. Before they attempted to escape, Daedalus warned Icarus against flying to…
Principal-Agent Problem: Act Like an Owner
We spoke earlier about picking a business model that has leverage from scale economies, network effects, zero marginal cost of replication. But there were a few other ideas on the cutting room floor that I want to go through with you. The first one was t…
Your Top Questions Answered: Part 1
What should you do if you want to be very successful and have a very, very big impact on the world? Make your work and your passion the same thing. Don’t forget about the money part, but do it in a way that you’re going to, uh, produce enough money that y…