yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

ATP synthase | Cellular energetics | AP Biology | Khan Academy


3m read
·Nov 11, 2024

In this video, we're going to talk about what is arguably my favorite enzyme, and that is ATP synthase. You might be able to predict from its name what it does: it synthesizes ATP.

Now, you've probably seen it before. We saw it when we looked at respiration, or you will see it when you look at respiration, which is going on in most of the cells of your body. You also see it when you study photosynthesis. The general thing that it does is it sits across a phospholipid membrane, and through other processes, you will have hydrogen ion concentration increase on one side of the membrane.

You have a higher hydrogen ion concentration on one side than on the other side. You still might have a few over here, and a hydrogen ion is essentially a proton. On this side of the membrane, it'll be more positive, so there will be an electromotive force to go to the other side. Additionally, you just have a higher concentration, so there's a chemical gradient, a concentration gradient, where if there's some way for these protons to get to this side, they would want to get there.

So, there's an electrochemical gradient that they would want to go down, and ATP synthase provides a channel for those protons. As those protons travel through the ATP synthase, they turn this part of it, which drives this axle; this axle nudges these parts of the protein so that they jam together an ADP with a phosphate group to produce ATP.

So down here, going into this part of the complex, you'll have an ADP and a phosphate group. Then that rotation force, that's provided by that electrochemical gradient, produces our ATP. That's going to be the case both in respiration, which occurs in the mitochondria, and in photosynthesis, which occurs in chloroplasts.

Now, there are a few differences. In mitochondria, the hydrogen ions, these protons, the concentration builds up in the intermembrane space right over here because of the electron transport chain, and we study that in other videos. Then, the protons travel through the ATP synthase. You can see a little mini version right over here; you can imagine that what we see really big is a blown-up version of this part of the mitochondria. Of course, this is not to scale.

In the case of a mitochondrion, this would be the inner membrane. Right over here would be the intermembrane space between the inner and the outer membrane. The intermembrane space, and right over here would be the matrix of the mitochondria. As the protons go through, they're able to produce ATP in the matrix.

Now, in chloroplasts, the hydrogen protons build up inside the thylakoids, which are these parts of the chloroplast. That space inside the thylakoid is often called the thylakoid space, sometimes called the lumen. That proton buildup inside the thylakoids happens because of the light reactions, the first phase of photosynthesis. But then, those protons will travel through the thylakoid membrane to this area, which is known as the stroma in chloroplasts, and they produce the ATP in the stroma.

But then the ATP is used in the second phase of photosynthesis to synthesize carbohydrates, which you could use as one of the end products of photosynthesis.

So, the big takeaway of this video is, one: ATP synthase is incredibly cool. If you look up on the internet, you can find some simulations that show ATP synthase and how it acts like a motor to jam the phosphate group to the ADP to produce ATP.

ATP synthase in mitochondria and chloroplasts are remarkably similar, although they sit in different parts of these organelles. The ATP in mitochondria can be viewed as the end product of respiration, while the ATP produced in chloroplasts is an intermediary store of energy, which is then used to synthesize carbohydrates.

More Articles

View All
Over 100,000 Sea Turtles Nest at the Same Time. How? | National Geographic
My main interest is understanding how, or specifically what the mechanism is for these sea turtles to synchronize their nesting behaviors. We do not know why the sea turtles specifically come to Austin. Sea turtles are renowned for their ability to trave…
Homeroom with Sal & Congresswoman Karen Bass - Wednesday, August 26
Hi everyone, Sal Khan here. Welcome to this Homeroom live stream. As always, I’m very excited about the conversation we’re going to have with our guest today, Representative Karen Bass. But before we get to that, I’ll give my standard announcements. Fir…
15 Skills You Need to Thrive in The Next 15 Years
You know what? It’s the rule breakers who’ll be the most successful in the future workforce. Those who stick to the guidelines are going to struggle; machines can do that. If you want to be competitive in the workforce, well then, you need to add value be…
Safari Live - Day 146 | National Geographic
Viewer discretion is advised. Good afternoon, everybody, and welcome to the Sunday Sunsets of Fari: a quiet contemplation of the week that was and the week that is to come. We have some starlings: they’re a mixed flock of Greater Blue Eared and Cape Gloss…
Types of mixtures | Intermolecular forces and properties | AP Chemistry | Khan Academy
I suspect that you might already be familiar with the term “mixture.” It really does mean what you think it means. If you take two or more substances and you were to mix them together, you are dealing with a mixture, and it could be a solid, a liquid, or …
Where Our Fear of Sharks Came From | Nat Geo Explores
(intense music) (water splashing) [Narrator] This can be scary, and rightfully so. Sharks have patrolled the waters for over 400 million years. And while they are powerful creatures, our stories have given them the reputation of being vengeful killers. …