yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

ATP synthase | Cellular energetics | AP Biology | Khan Academy


3m read
·Nov 11, 2024

In this video, we're going to talk about what is arguably my favorite enzyme, and that is ATP synthase. You might be able to predict from its name what it does: it synthesizes ATP.

Now, you've probably seen it before. We saw it when we looked at respiration, or you will see it when you look at respiration, which is going on in most of the cells of your body. You also see it when you study photosynthesis. The general thing that it does is it sits across a phospholipid membrane, and through other processes, you will have hydrogen ion concentration increase on one side of the membrane.

You have a higher hydrogen ion concentration on one side than on the other side. You still might have a few over here, and a hydrogen ion is essentially a proton. On this side of the membrane, it'll be more positive, so there will be an electromotive force to go to the other side. Additionally, you just have a higher concentration, so there's a chemical gradient, a concentration gradient, where if there's some way for these protons to get to this side, they would want to get there.

So, there's an electrochemical gradient that they would want to go down, and ATP synthase provides a channel for those protons. As those protons travel through the ATP synthase, they turn this part of it, which drives this axle; this axle nudges these parts of the protein so that they jam together an ADP with a phosphate group to produce ATP.

So down here, going into this part of the complex, you'll have an ADP and a phosphate group. Then that rotation force, that's provided by that electrochemical gradient, produces our ATP. That's going to be the case both in respiration, which occurs in the mitochondria, and in photosynthesis, which occurs in chloroplasts.

Now, there are a few differences. In mitochondria, the hydrogen ions, these protons, the concentration builds up in the intermembrane space right over here because of the electron transport chain, and we study that in other videos. Then, the protons travel through the ATP synthase. You can see a little mini version right over here; you can imagine that what we see really big is a blown-up version of this part of the mitochondria. Of course, this is not to scale.

In the case of a mitochondrion, this would be the inner membrane. Right over here would be the intermembrane space between the inner and the outer membrane. The intermembrane space, and right over here would be the matrix of the mitochondria. As the protons go through, they're able to produce ATP in the matrix.

Now, in chloroplasts, the hydrogen protons build up inside the thylakoids, which are these parts of the chloroplast. That space inside the thylakoid is often called the thylakoid space, sometimes called the lumen. That proton buildup inside the thylakoids happens because of the light reactions, the first phase of photosynthesis. But then, those protons will travel through the thylakoid membrane to this area, which is known as the stroma in chloroplasts, and they produce the ATP in the stroma.

But then the ATP is used in the second phase of photosynthesis to synthesize carbohydrates, which you could use as one of the end products of photosynthesis.

So, the big takeaway of this video is, one: ATP synthase is incredibly cool. If you look up on the internet, you can find some simulations that show ATP synthase and how it acts like a motor to jam the phosphate group to the ADP to produce ATP.

ATP synthase in mitochondria and chloroplasts are remarkably similar, although they sit in different parts of these organelles. The ATP in mitochondria can be viewed as the end product of respiration, while the ATP produced in chloroplasts is an intermediary store of energy, which is then used to synthesize carbohydrates.

More Articles

View All
Rewriting fractions as decimals | Math | 4th grade | Khan Academy
Let’s write 29 hundreds as a decimal. So, we’ll start with 29 over 100, and let’s start breaking that down till we can get to place values. Because place values will help us to convert to write this as a decimal. 29 hundreds can be broken down into 20 hu…
John Preskill on Quantum Computing
And what was the revelation that made scientists and physicists think that a quantum computer could exist? It’s not obvious, you know, a lot of people thought you couldn’t. Okay. The idea that a quantum computer would be powerful was emphasized over 30 ye…
A Robot That Walks, Flies, Skateboards, Slacklines
This is a robot that walks, flies, skateboards, and slacklines. But why? A portion of this video was sponsored by Bluehost. More about them at the end of the show. There are lots of bipedal robots out there, and drones are ubiquitous. But until now, no on…
Calculating angle measures to verify congruence | Congruence | High school geometry | Khan Academy
We have four triangles depicted here, and they’ve told us that the triangles are not drawn to scale. We are asked which two triangles must be congruent, so pause this video and see if you can work this out on your own before we work through this together.…
Decimal multiplication place value
This is an exercise from Khan Academy. It tells us that the product 75 times 61 is equal to 4575. Use the previous fact to evaluate as a decimal this right over here: 7.5 times 0.061. Pause this video and see if you can have a go at it. All right, now le…
How to light multiple matches with a single bullet
Hey, it’s me Destin. About three years ago I did a YouTube video, but I tried to have a lot of matches with a bullet, and I never could do it. So, we’ve kind of up the ante here. We’ve taken that same rifle, that Ruger 10⁄22, and we’ve made a fully adjust…