yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying scaled copies


3m read
·Nov 11, 2024

What we're going to do in this video is look at pairs of figures and see if they are scaled copies of each other.

So for example, in this diagram, is figure B a scaled version of figure A? Pause the video and see if you can figure that out.

There are multiple ways that you could approach this. One way is to say, well, let's see what the scaling factor would be. So we could look at this length side length. This side right over here has length 3 on figure A. This side length right over here has length one, two, three, four, five. This side length has length five as well. This has length five.

We could figure it out with the Pythagorean theorem, but I won't even look at that one just yet. But let's look at corresponding sides. So to go from this side, if we scale up, the corresponding side to that would be this side right over here. And what is its length? Well, its length when you scale it up looks like five.

So to go from three to five, you would have to multiply by five thirds. But let's look at this side now. So it's five in figure A. What length is it in figure B? Well, it is one, two, three, four, five. It's still five. So to go from five to five, you have to multiply by 1.

And so you have a different scaling factor for corresponding, or what could have been corresponding sides. This side right over here, you're scaling up by five thirds, while this bottom side, this base right here, you're not scaling at all. So these actually are not scaled versions of each other.

Let's do another example. So in this example, is figure B a scaled version of figure A? Pause the video and see if you can figure it out.

All right, well, we're going to do the same exercise, and here they've given us the measures of the different sides. So this side has length 2. This side has length, the corresponding side, or what could be the corresponding side, has length 6. To go from two to six, you have to multiply by three.

If we look at these two potentially corresponding sides, that side and that side, once again, to go from four to twelve, you would multiply by three. So that is looking good as well. Now, to go from this side down here, this has length six. The potentially corresponding side right over here has length 14.

Well, here we're not multiplying by 3. If these were scaled, if figure B was a scaled-up version of figure A, we would multiply by 3. But 6 times 3 is not 14; it's 18. So these actually are not—figure B is not a scaled version of figure A.

Let's do one more example. So once again, pause this video and see if figure B is a scaled version of figure A.

So we're going to do the same exercise. Let's look at potentially corresponding sides. So that side to that side— to go from 4 to 12, we would multiply by 3. Then we could look at this side and this side. To go from 4 to 12, once again, you multiply by 3.

So that's looking good so far. We could look at this side and this side—potentially corresponding sides. Once again, we're going from 4 to 12, multiplying by 3 looks good so far. And then we could look at this side and this side—2.2 to 6.6, once again multiplying by 3, looking really good.

And then we only have one last one to check—2.2 to 6.6, once again multiplying by 3. So all of the side lengths have been scaled up by 3, so we can feel pretty good that figure B is indeed a scaled-up representation of figure A.

More Articles

View All
The Art of Skydiving | Science of Stupid: Ridiculous Fails
NARRATOR: Like Yasuhiro Kubo here, going for a Guinness world record title. He’ll be free falling from around 10,000 feet and attempting to catch up with his parachute attached to this canister. The record is determined by how long he waits before jumping…
Worked example: over- and under-estimation of Riemann sums | AP Calculus AB | Khan Academy
The continuous function ( g ) is graphed. We’re interested in the area under the curve between ( x ) equals negative seven and ( x ) equals seven, and we’re considering using Riemann sums to approximate it. So, this is the area that we’re thinking about i…
Identifying key features of exponential functions | Algebra 1 (TX TEKS) | Khan Academy
We’re told to consider the exponential function f where f of x is equal to 3 * 12 to the power of x. Now they ask us several questions about the y-intercept of f, the common ratio of f, and what is the equation of the asymptote of f. So pause this video a…
State checks on the judicial branch | US government and civics | Khan Academy
In previous videos, we had talked about the 1896 Supreme Court case Plessy versus Ferguson, which is a good one to know in general if you’re studying United States history and/or United States government. But this is where we got the principle of separate…
The Calm and Quiet Antarctic | Continent 7: Antarctica
[Music] The one thing that I really miss about being at home, honestly, is probably being able to move around and to exercise. Move in a straight line for a long time. Generally, my research is ship-based, so we’re on a two or 300-ton research boat for a …
15 Things You Didn't Know About LACOSTE
[Music] Fifteen things you didn’t know about Lacoste. Welcome to a Lux.com, the place where future billionaires come to get inspired. Hello, Alxer, and welcome to another LXCOM original video. This is the best place to get inspired and learn more about t…