yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting equations graphically (example 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let F of T be ( e^{2T} - 2T^2 ) and H of T be ( 4 - 5T^2 ). The graphs of Y = F(T) and Y = H(T) are shown below. So, Y = F(T) is here in green, so this is really ( Y = e^{2T} - 2T^2 ). We see F(T) right over there, and Y = H(T) is shown in yellow.

Alright, now below that they say which of the following appear to be solutions of ( e^{2T} - 2T^2 = 4 - 5T^2 )? Select all that apply, and I encourage you to pause the video and try to think about it.

Now, the key here is to realize that ( e^{2T} - 2T^2 ) that was F(T) and ( 4 - 5T^2 ) is H(T). So another way of thinking about it: select all of the T's for which F(T) is equal to H(T). So all of the T's where F(T) is equal to H(T, well that's going to happen at the points of intersection.

For example, at T1, we see at this point right here T1, ( Y1 ). So this tells us ( F(T1) = H(T1) ), which is equal to ( Y1 ). So F(T) is going to be equal to H(T) at T = T1, and we see that there because it's a point of intersection.

Now let's keep on going. Well, they have another point of intersection right over here at T4, T4, ( Y4 ). If you took F(T4), you're going to get ( Y4 ), or if you take H(T4), you're going to get ( Y4 ). So ( F(T4) = H(T4) ).

Thus, ( F(T4) = H(T4) ). If you took ( e^{2 \cdot T4} - 2T4^2 ), that is going to be equal to ( 4 - 5 \cdot T4^2 ). So ( T4 ), since it satisfies both F(T) and H(T), equals each other when T is equal to T4.

These two things are going to equal each other when T is equal to T4, and those are the only ones that are at a point of intersection. I think we are done. Check my answer, and got it right.

More Articles

View All
Warren Buffett isn't Buying ANYTHING Right Now | (Berkshire Hathaway Annual Shareholder Meeting)
So recently, Berkshire Hathaway had its 2020 annual shareholder meeting where Warren Buffett sat down with Gregg Abel to discuss all things finance and Berkshire Hathaway. What was very interesting is that in that meeting, it was revealed that year-to-dat…
Introduction to plate tectonics | Middle school Earth and space science | Khan Academy
What if I told you that the Earth below you is moving? You’d probably say, “Of course it’s moving! We’re standing on a planet that’s spinning on its axis while revolving around the sun at about 107,000 kilometers per hour.” On top of that, our whole sola…
Buy Great Companies that Goes Up and UP and Sit on Your A$$ Investing | Charlie Munger | 2023
Picking your shots, I mean, I think you call it sit on your ass investing. The investing where you find a few great companies and just sit on your ass because you’ve correctly predicted the future. That is what it’s very nice to be good at. A lot of what…
Tom Friedman on saving lives and livelihoods & honoring the heroes of the crisis | Homeroom with Sal
Hi everyone! Welcome to the daily homeroom live stream. I’m Sal from Khan Academy, and I’m super excited about our guest today. So I’m actually just gonna go through my announcements pretty fast so that we have as much time with Tom Friedman as possible. …
Sources of genetic variation | Inheritance and variation | High school biology | Khan Academy
In this video, we’re going to talk about sources of genetic variation, which is key for evolution and natural selection to happen. Just as a little bit of a primer: natural selection, you can have a bunch of different organisms with different genetics, di…
Everest Weather - Data is in the Clouds | National Geographic
Everest is one of the most extreme environments on the planet, and nobody has ever fully quantified the climate conditions up there. We’re going to be pushing the envelope, attempting to install the highest weather station in the world to improve our unde…