yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting equations graphically (example 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let F of T be ( e^{2T} - 2T^2 ) and H of T be ( 4 - 5T^2 ). The graphs of Y = F(T) and Y = H(T) are shown below. So, Y = F(T) is here in green, so this is really ( Y = e^{2T} - 2T^2 ). We see F(T) right over there, and Y = H(T) is shown in yellow.

Alright, now below that they say which of the following appear to be solutions of ( e^{2T} - 2T^2 = 4 - 5T^2 )? Select all that apply, and I encourage you to pause the video and try to think about it.

Now, the key here is to realize that ( e^{2T} - 2T^2 ) that was F(T) and ( 4 - 5T^2 ) is H(T). So another way of thinking about it: select all of the T's for which F(T) is equal to H(T). So all of the T's where F(T) is equal to H(T, well that's going to happen at the points of intersection.

For example, at T1, we see at this point right here T1, ( Y1 ). So this tells us ( F(T1) = H(T1) ), which is equal to ( Y1 ). So F(T) is going to be equal to H(T) at T = T1, and we see that there because it's a point of intersection.

Now let's keep on going. Well, they have another point of intersection right over here at T4, T4, ( Y4 ). If you took F(T4), you're going to get ( Y4 ), or if you take H(T4), you're going to get ( Y4 ). So ( F(T4) = H(T4) ).

Thus, ( F(T4) = H(T4) ). If you took ( e^{2 \cdot T4} - 2T4^2 ), that is going to be equal to ( 4 - 5 \cdot T4^2 ). So ( T4 ), since it satisfies both F(T) and H(T), equals each other when T is equal to T4.

These two things are going to equal each other when T is equal to T4, and those are the only ones that are at a point of intersection. I think we are done. Check my answer, and got it right.

More Articles

View All
Sexual and asexual reproduction | Middle school biology | Khan Academy
The planet we live on is full of life and has been for billions of years. Living things on Earth have existed for as long as they have because life found a way to create life. Sounds crazy, right? To put it another way, living things found ways to reprodu…
Consumer protection | Scams & fraud | Financial literacy | Khan Academy
So one thing to think about as you think about your own financial literacy is what do you do in a situation where you try to interact with some type of a business or a financial institution, and they either are misinforming you in some way or they’re not …
15 Ways To Look Strong
Gone are the medieval days when the strong were those who hunted bears, rode into battles as knights, had the protection of vassals, or acted as proper ladies. In modern times, strength has taken a different meaning. The strong, in most cases, are those t…
Michael Seibel - Building Product
Without any further delay, I will introduce to you Michael Seibel, the CEO of Y Combinator, the founder of companies like justin.tv and Twitch, and Socialcam, to begin what is going to be a deep dive into product over the next several lectures. Michael: …
What You Need To Know About The Future of Finance | Griffin Milks
So let’s get right into it. I’ll start with you, Ben, since for my audience you’re more of a new face here. Tell us a bit more about yourself, your background, and really why you chose to pursue a venture in the decentralized finance space. Ben: You bet!…
The Alternative Vote Explained
Queen Lion of the Animal Kingdom is displeased. She recently introduced elections for the office of king using the first-past-the-post voting system. While her realm started out as a healthy democracy with many parties running candidates for king, it quic…