yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting equations graphically (example 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let F of T be ( e^{2T} - 2T^2 ) and H of T be ( 4 - 5T^2 ). The graphs of Y = F(T) and Y = H(T) are shown below. So, Y = F(T) is here in green, so this is really ( Y = e^{2T} - 2T^2 ). We see F(T) right over there, and Y = H(T) is shown in yellow.

Alright, now below that they say which of the following appear to be solutions of ( e^{2T} - 2T^2 = 4 - 5T^2 )? Select all that apply, and I encourage you to pause the video and try to think about it.

Now, the key here is to realize that ( e^{2T} - 2T^2 ) that was F(T) and ( 4 - 5T^2 ) is H(T). So another way of thinking about it: select all of the T's for which F(T) is equal to H(T). So all of the T's where F(T) is equal to H(T, well that's going to happen at the points of intersection.

For example, at T1, we see at this point right here T1, ( Y1 ). So this tells us ( F(T1) = H(T1) ), which is equal to ( Y1 ). So F(T) is going to be equal to H(T) at T = T1, and we see that there because it's a point of intersection.

Now let's keep on going. Well, they have another point of intersection right over here at T4, T4, ( Y4 ). If you took F(T4), you're going to get ( Y4 ), or if you take H(T4), you're going to get ( Y4 ). So ( F(T4) = H(T4) ).

Thus, ( F(T4) = H(T4) ). If you took ( e^{2 \cdot T4} - 2T4^2 ), that is going to be equal to ( 4 - 5 \cdot T4^2 ). So ( T4 ), since it satisfies both F(T) and H(T), equals each other when T is equal to T4.

These two things are going to equal each other when T is equal to T4, and those are the only ones that are at a point of intersection. I think we are done. Check my answer, and got it right.

More Articles

View All
Llamas Bring Happiness to Nursing Home | National Geographic
If you had someone and you said, “Let’s go look at a llama,” the llama’s coming in the building. My gosh! When does a llama come in the building? As soon as they see Travis in the building, everybody just wants to touch him repeatedly. Even when you come …
They Call It "The Cupola" - Smarter Every Day 303
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I’m very excited to share this video with you because it means a lot to me to see how it’s all played out. Years ago, I met a guy named Don Pettit. Don is an astronaut, and he is an incredibly curio…
The Closer You Are to the Truth, the More Silent You Become Inside
One of the tweets that I put out a while back was: “The closer you get to the truth, the more silent you are inside.” We intuitively know this. When someone is blabbing too much, that person talks too much at the party—the court jester. You know they’re n…
The Best Video Essays of 2022 | Aperture
The useless information, the things that we think about when we want to escape. Time flies like an arrow, but fruit flies like a banana. I mean, fruit flies don’t fly like a banana; even bananas probably don’t fly like bananas. Not like I’ve seen a banana…
Khan Academy Districts Overview
Foreign [Music] The benefit that Khan Academy brings to our school district is being able to provide a platform that provides individualized practice study skill. The ability for students to increase their knowledge proficiency. The support that Khan Aca…
Polynomial division introduction | Algebra 2 | Khan Academy
We’re already familiar with the idea of a polynomial, and we’ve spent some time adding polynomials, subtracting polynomials, multiplying polynomials, and factoring polynomials. What we’re going to think about in this video, and really start to think abou…