yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing exponential growth & decay | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

This is from the graph basic exponential functions on KH Academy, and they ask us to graph the following exponential function. They give us the function ( H(x) = 27 \cdot \left(\frac{1}{3}\right)^x ). So our initial value is 27, and ( \frac{1}{3} ) is our common ratio. It's written in kind of standard exponential form. They give us this little graphing tool where we can define these two points, and we can also define, uh, we can define a horizontal asymptote to construct our function. These three things are enough to graph an exponential if we know that it is an exponential function.

So let's think about it a little bit. The easiest thing that I could think of is, well, let's think about its initial value. Its initial value is going to be when ( x = 0 ). ( H(0) = 27 \cdot \left(\frac{1}{3}\right)^0 ), which is just 1, and so you're just left with ( 27 \cdot 1 ) or just 27. That's why we call this number here, when you write it in this form, you call this the initial value. So when ( x ) is equal to 0, ( H(0) = 27 ), and we're graphing ( y = H(x) ).

Now let's graph another point. So let's think about it a little bit. When ( x = 1 ), what is ( H(1) )? It's going to be ( \left(\frac{1}{3}\right)^1 ), which is just ( \frac{1}{3} ), and so ( \frac{1}{3} \cdot 27 ) is going to be 9. So when ( x = 1 ), ( H(1) = 9 ), and we can verify that.

Now let's just think about the asymptote. So what's going to happen here when ( x ) becomes really, really, really, really, really big? Well, if I take ( \left(\frac{1}{3}\right) ) to like a really large exponent, say to the 10th power, or to the 100th power, or to the 1000th power, this thing right over here is going to start approaching zero as ( x ) becomes much, much, much larger. So something that is approaching 0 times 27, well, that's going to approach 0 as well. So we're going to have a horizontal asymptote at 0.

You can verify that this works for more than just the two points we thought about. When ( x = 2 ), this is telling us that the graph ( y = H(x) ) goes through the point (2, 3). So ( H(2) ) should be equal to 3. You can verify that that is indeed the case. If ( x = 2 ), ( \left(\frac{1}{3}\right)^2 ) is ( \frac{1}{9} ), and ( \frac{1}{9} \cdot 27 = 3 ). We see that right over here when ( x = 2 ), ( H(2) = 3 ).

So I feel pretty good about that. Let's do another one of these. So graph the following exponential function. Same logic: when ( x = 0 ), the ( G(z) ) is just going to boil down to that initial value. So let me scroll down. The initial value is -30.

Now let's think about when ( x = 1 ). When ( x = 1 ), ( 2^1 ) is just 2, and so ( 2 \cdot (-30) = -60 ). So when ( x = 1 ), the value of the graph is -60.

Now let's think about this asymptote, where that should sit. So let's think about what happens when ( x ) becomes really, really, really, really, really negative. When ( x ) is really negative, ( 2^{-1} ) is ( \frac{1}{2} ), ( 2^{-2} ) is ( \frac{1}{4} ), and ( 2^{-3} ) is ( \frac{1}{8} ). As you get larger and larger negative values, or in another way, as ( x ) becomes more and more negative, ( 2 ) to that power is going to approach zero.

So (-30 \cdot) something approaching zero is going to approach zero. So this asymptote is in the right place. Our horizontal asymptote, as ( x ) approaches negative infinity, as we move further and further to the left, the value of the function is going to approach zero. We can see it kind of approaches zero from below. We can see that it approaches zero below because we already looked at the initial value, and we used that common ratio to find one point. Hopefully, you found that interesting.

More Articles

View All
How to Get Rich Without Getting Lucky (Naval Ravikant)
So what if I told you there was an instruction manual on how to get rich in today’s economy? Would you want to know what that instruction manual consisted of? Believe it or not, this actually exists, and we’re going to go through it all in today’s video. …
My Sister Got Malaria ....(And I Didn't) - Smarter Every Day 167
Video about global health issues. Now, here’s the deal: when you think about—let’s make a video about global health issues—you think about statistics and numbers and like money, or you think about your sister who served in the Peace Corps in Sub-Saharan A…
I spent 24 hours with my AI girlfriend
In 2014, Spike Jonze released Her, a film about a man falling in love with his AI companion. The main character, Theodore Twombly, lives a lonely life after separating from his wife. One day, he purchases a software upgrade with a virtual assistant built …
Tuna Tragedy | Wicked Tuna: Outer Banks
Mark, get them nice! Mark, big one! There’s less than one day left till the season closes, and we’re nervous. We’ve only caught two fish so far. We haven’t made much money, and if we don’t put some fish in the boat, this season’s going to be a bust. Come…
It’s the Diseases We Get As We Age That Kill Us | Breakthrough
Researchers at the Buck Institute in Northern California are looking for ways to prevent the many diseases associated with aging by slowing the aging process itself. To discover drugs that will one day increase health in human beings, researchers start mu…
How to Analyze a Cash Flow Statement Like a Hedge Fund Analyst
There’s an old saying: cash is king. However, when it comes to investing, cash flow is king. In this video, we are going to go over how to analyze a company’s cash flow statement. I’m going to draw upon my experience as an investment analyst at a large in…