yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing exponential growth & decay | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

This is from the graph basic exponential functions on KH Academy, and they ask us to graph the following exponential function. They give us the function ( H(x) = 27 \cdot \left(\frac{1}{3}\right)^x ). So our initial value is 27, and ( \frac{1}{3} ) is our common ratio. It's written in kind of standard exponential form. They give us this little graphing tool where we can define these two points, and we can also define, uh, we can define a horizontal asymptote to construct our function. These three things are enough to graph an exponential if we know that it is an exponential function.

So let's think about it a little bit. The easiest thing that I could think of is, well, let's think about its initial value. Its initial value is going to be when ( x = 0 ). ( H(0) = 27 \cdot \left(\frac{1}{3}\right)^0 ), which is just 1, and so you're just left with ( 27 \cdot 1 ) or just 27. That's why we call this number here, when you write it in this form, you call this the initial value. So when ( x ) is equal to 0, ( H(0) = 27 ), and we're graphing ( y = H(x) ).

Now let's graph another point. So let's think about it a little bit. When ( x = 1 ), what is ( H(1) )? It's going to be ( \left(\frac{1}{3}\right)^1 ), which is just ( \frac{1}{3} ), and so ( \frac{1}{3} \cdot 27 ) is going to be 9. So when ( x = 1 ), ( H(1) = 9 ), and we can verify that.

Now let's just think about the asymptote. So what's going to happen here when ( x ) becomes really, really, really, really, really big? Well, if I take ( \left(\frac{1}{3}\right) ) to like a really large exponent, say to the 10th power, or to the 100th power, or to the 1000th power, this thing right over here is going to start approaching zero as ( x ) becomes much, much, much larger. So something that is approaching 0 times 27, well, that's going to approach 0 as well. So we're going to have a horizontal asymptote at 0.

You can verify that this works for more than just the two points we thought about. When ( x = 2 ), this is telling us that the graph ( y = H(x) ) goes through the point (2, 3). So ( H(2) ) should be equal to 3. You can verify that that is indeed the case. If ( x = 2 ), ( \left(\frac{1}{3}\right)^2 ) is ( \frac{1}{9} ), and ( \frac{1}{9} \cdot 27 = 3 ). We see that right over here when ( x = 2 ), ( H(2) = 3 ).

So I feel pretty good about that. Let's do another one of these. So graph the following exponential function. Same logic: when ( x = 0 ), the ( G(z) ) is just going to boil down to that initial value. So let me scroll down. The initial value is -30.

Now let's think about when ( x = 1 ). When ( x = 1 ), ( 2^1 ) is just 2, and so ( 2 \cdot (-30) = -60 ). So when ( x = 1 ), the value of the graph is -60.

Now let's think about this asymptote, where that should sit. So let's think about what happens when ( x ) becomes really, really, really, really, really negative. When ( x ) is really negative, ( 2^{-1} ) is ( \frac{1}{2} ), ( 2^{-2} ) is ( \frac{1}{4} ), and ( 2^{-3} ) is ( \frac{1}{8} ). As you get larger and larger negative values, or in another way, as ( x ) becomes more and more negative, ( 2 ) to that power is going to approach zero.

So (-30 \cdot) something approaching zero is going to approach zero. So this asymptote is in the right place. Our horizontal asymptote, as ( x ) approaches negative infinity, as we move further and further to the left, the value of the function is going to approach zero. We can see it kind of approaches zero from below. We can see that it approaches zero below because we already looked at the initial value, and we used that common ratio to find one point. Hopefully, you found that interesting.

More Articles

View All
When Food Can Kill You: Coping With Severe Food Allergies | National Geographic
Morning. It is not a terminal illness that my child has, but it is an every day, every second, every moment, the unknown of every day. He could possibly die, and we have no clue when it’s gonna happen sometimes. But if we’re prepared, we’re continuing on …
Lecture 15 - How to Manage (Ben Horowitz)
So when Sam originally sent me an email to do this course, he said, “Ben, can you teach a 15-minute course on management?” And I immediately thought to myself, wow, I just wrote a 300-page book on management, so that book was entirely too long. And I, I d…
Bitcoin Is About To Snap
What’s up Grandma! It’s guys here, so we gotta bring attention to a topic that, in my opinion, is not getting enough recognition. Which I think is surprising because this has the potential to completely change the trajectory in terms of how we transact mo…
Limits from graphs | Limits and continuity | AP Calculus AB | Khan Academy
So we have the graph of y equals f of x right over here, and we want to figure out three different limits. And like always, pause this video and see if you can figure it out on your own before we do it together. All right, now first, let’s think about wh…
Labeling voltages
In this video, I want to do a demonstration of the process of labeling voltages on a circuit that we’re about to analyze. This is something that sometimes causes stress or confusion, and I want to just basically try to get out of that stressful situation.…
Khan Academy Ed Talks with LaVerne Srinivasan
Hi everyone! Sal Khan here from Khan Academy. Welcome to the Ed Talks version of our Homeroom with Sal live stream. We have a very exciting conversation today with Laverne Srinivasan. But before we get into that conversation, I will give my standard remin…