yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Powers of zero | Exponents, radicals, and scientific notation | Pre-algebra | Khan Academy


2m read
·Nov 10, 2024

In this video, we're going to talk about powers of zero. Just as a little bit of a reminder, let's start with a non-zero number just to remind ourselves what exponentiation is all about.

So, if I were to take 2 to the first power, one way to think about this is we always start with a one, and then we multiply this base that many times times that one. So here we're going to have one, two. So it's going to be one times 2, which is of course equal to 2.

If I were to say, what is 2 to the second power? Well, that's going to be equal to 1 times, and now I'm going to have two twos. So, times 2 times 2, which is equal to 4. You could keep going like that.

Now, the reason why I have this 1 here, and we've done this before, is to justify, and there's many other good reasons why 2 to the zero power should be equal to one. But you could see if we use the same exact idea here: you start with a one, and then you multiply it by two zero times. Well, that's just going to end up with a one.

So, so far I've told you this video is about powers of zero, but I've been doing powers of two. So let's focus on zero now. What do you think zero to the first power is going to be? Pause this video and try to figure that out.

Well, you do the exact same idea: you start with a one and then multiply it by zero one time. So, times zero, and this is going to be equal to zero. What do you think zero to the second power is going to be equal to? Pause this video and think about that.

Well, it's going to be 1 times 0 twice. So, times 0 times 0, and I think you see where this is going. This is also going to be equal to zero. What do you think zero to some arbitrary positive integer is going to be?

Well, it's going to be equal to 1 times 0 that positive integer number of times. So, once again, it's going to be equal to 0. In general, you can extend that 0 to any positive value exponent; it's going to give you zero. So, that's pretty straightforward.

But there is an interesting edge case here. What do you think zero to the zeroth power should be? Pause this video and think about that.

Well, this is actually contested; different people will tell you different things. If you use the intuition behind exponentiation that we've been using in this video, you would say, all right, I would start with a one and then multiply it by zero zero times. Or in other words, I just wouldn't multiply it by zero, in which case I'm just left with the one.

That means zero to the zero power should be equal to one. Other folks would say, hey, no, I'm with a zero, and that's the zeroth power; maybe it should be a zero. That's why a lot of folks leave it undefined. Most of the time, you're going to see zero to the zero power either being undefined or that it is equal to 1.

More Articles

View All
YC SUS: Kat Mañalac and Eric Migicovsky discuss Week 2 SUS Lectures
Good morning everyone, and good evening. It could be anywhere actually. I’d like to start somewhere. My name is Eric, and I’m the facilitator, of course, facilitator here at Startup School. It’s a pleasure to be joined by Kat. “Hi everyone, I’m Kat, a pa…
Property insurance | Insurance | Financial Literacy | Khan Academy
Let’s talk a little bit about property insurance. The first question is, why would you want to insure property? Well, for a lot of folks, their property is a lot of, uh, the most expensive things they have that would be very hard to replace if something b…
Introduction to residuals and least-squares regression | AP Statistics | Khan Academy
Let’s say we’re trying to understand the relationship between people’s height and their weight. So what we do is we go to 10 different people and we measure each of their heights and each of their weights. And so on. This scatter plot here, each dot repr…
Introduction to production functions | APⓇ Microeconomics | Khan Academy
You will hear the term production function thrown around in economics circles, and it might seem a little intimidating and a little mathy at first. But as you’re about to see, it’s a fairly basic idea. It’s this idea that you could have these various inp…
The Collapse of West Virginia's Silver Bridge | Atlas of Cursed Places
SAM SHERIDAN: This is a place that has seen a lot of human tragedy. You can bundle it up under the blanket of a curse, but you can’t deny that there is something at work here, some relationship between West Virginian industry and a seemingly endless cycle…
Revolutionizing the Way We Grow Food | Nat Geo Live
( intro music ) Caleb Harper: My talk is about how to solve the global food crisis. Technology and seed is for an adverse world. What if you had a perfect world? Researching this, for me, took me to a place of learning about Mir Space Station. You know, …