yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Powers of zero | Exponents, radicals, and scientific notation | Pre-algebra | Khan Academy


2m read
·Nov 10, 2024

In this video, we're going to talk about powers of zero. Just as a little bit of a reminder, let's start with a non-zero number just to remind ourselves what exponentiation is all about.

So, if I were to take 2 to the first power, one way to think about this is we always start with a one, and then we multiply this base that many times times that one. So here we're going to have one, two. So it's going to be one times 2, which is of course equal to 2.

If I were to say, what is 2 to the second power? Well, that's going to be equal to 1 times, and now I'm going to have two twos. So, times 2 times 2, which is equal to 4. You could keep going like that.

Now, the reason why I have this 1 here, and we've done this before, is to justify, and there's many other good reasons why 2 to the zero power should be equal to one. But you could see if we use the same exact idea here: you start with a one, and then you multiply it by two zero times. Well, that's just going to end up with a one.

So, so far I've told you this video is about powers of zero, but I've been doing powers of two. So let's focus on zero now. What do you think zero to the first power is going to be? Pause this video and try to figure that out.

Well, you do the exact same idea: you start with a one and then multiply it by zero one time. So, times zero, and this is going to be equal to zero. What do you think zero to the second power is going to be equal to? Pause this video and think about that.

Well, it's going to be 1 times 0 twice. So, times 0 times 0, and I think you see where this is going. This is also going to be equal to zero. What do you think zero to some arbitrary positive integer is going to be?

Well, it's going to be equal to 1 times 0 that positive integer number of times. So, once again, it's going to be equal to 0. In general, you can extend that 0 to any positive value exponent; it's going to give you zero. So, that's pretty straightforward.

But there is an interesting edge case here. What do you think zero to the zeroth power should be? Pause this video and think about that.

Well, this is actually contested; different people will tell you different things. If you use the intuition behind exponentiation that we've been using in this video, you would say, all right, I would start with a one and then multiply it by zero zero times. Or in other words, I just wouldn't multiply it by zero, in which case I'm just left with the one.

That means zero to the zero power should be equal to one. Other folks would say, hey, no, I'm with a zero, and that's the zeroth power; maybe it should be a zero. That's why a lot of folks leave it undefined. Most of the time, you're going to see zero to the zero power either being undefined or that it is equal to 1.

More Articles

View All
Product rule example
So let’s see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it. So when you look at this, you might say, “Well, I know how to find th…
10 Worst Problems To Have
If you act dumb in the world, you’re going to get yourself into a lot of trouble. But some people simply can’t help themselves from making their own lives miserable. Part of the problem is their own inability to identify and prevent their errors in judgme…
Ridiculously Easy DIY Light Strips! (no soldering)
I want to change my bathroom from this to this. The problem is I want it to not cost a lot, be high quality, and be easy. I mean, is that even possible? Well, after trying out many different options and almost failing multiple times, I finally found a gre…
STRAPPED INTO A SINKING HELICOPTER (with U.S. Marines) - Smarter Every Day 201
(helicopter flying) (alarm systems beeping) [Instructor] Ditching, ditching, ditching. (water rushing) So, I’m alive. (laughs) All right, here’s the deal. My last mission as a U.S. government civil servant was in a helicopter off the coast of Hawaii. W…
Fight or Die | Edge of the Unknown on Disney+
It’s freaking gnarly, dude. It’s as gnarly as I could have imagined it being. This is a lot of fun. Just really nervous about how fast I’m going to be actually flying off the lip. With drop kayaking, when you’re really pushing yourself is when you feel m…
An Accidental Case of the Blues | Podcast | Overheard at National Geographic
So this is my first time back getting office in March, April, May, June, July, August—six months. Six months—like a lot of other places in the U.S. in the summer of 2020, our office was closed to help slow the spread of coronavirus. But in August, my prod…