yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying 1-digit numbers by 10, 100, and 1000 | Math | 4th grade | Khan Academy


3m read
·Nov 11, 2024

Let's talk about multiplying by 10, 100, and 1,000. There's some cool number patterns that happen with each of these, so let's start here with something like 4 * 10—one that maybe we're comfortable with or already know.

4 * 10 would be the same as saying four tens, four tens, and four tens. One way we could represent that is a 10 plus a second 10, it's a third 10 plus a fourth 10, or four tens. And now let's count that: 10 + 10 is 20; + 10 is 30; + 10 is 40. So our solution is 40, or a four with a zero.

This is the pattern that we've seen before. When we multiply 4 * 10, we keep our whole number of four, and we add a zero to the end.

For another example of that, let’s consider something like 8 * 10. Well, 8 * 10 is the same as 8 tens. This time, let's just count them. If we count 8 tens, it'll be 10, 20, 30, 40, 50, 60, 70, 80.

So, when I counted 8 tens, the solution was 80, or an 8 with a zero on the end. So, when we multiply a whole number by 10, the pattern is that we end up adding a zero to the end of our whole number.

Now, let’s take what we already know about tens and apply it to hundreds. Something like, let’s say, 2 * 100. There are a couple of ways we can think about this. One way is to say that this is the same as two hundreds.

Hundreds, which is 100 plus another 100. There is quite literally two hundreds, which is a total of two 100, or two with two zeros on the end. Now we have two zeros on the end.

Another way to think about this is 2 * 100. Instead of saying times 100, we could say times 10 times 10 because 10 * 10 is the same as 100. We know that 2 * 10 is a two with a zero on the end, which is 20, and 20 * 10 then will be 20 with a zero on the end.

Because we multiplied by 10 twice, we added two zeros. Multiplying by 100 is just that—it’s exactly that. It's multiplying by 10 twice. So, if times 10 adds one zero, then times 100, or times 10 twice, adds two zeros to our answer.

We can go even further and think about thousands. Let's try something like 9 * 1,000. Well, we could think of this as 9,000. If we have 9 thousands, then we have 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000.

So when I counted 1,000 times, our solution was 9,000, or looking at the numbers—a nine, our original whole number, with three zeros after it. So, 9 * 1,000 is 9,000, or 9 with three zeros.

We can go back to what we did before, thinking about this in terms of tens. We've worked out why multiplying by 10 adds a zero, so let’s think about 1,000 in terms of 10. 1,000 is equal to 10 * 10 * 10.

10 * 10 is 100, and 100 is 1,000. So instead of 1,000, we can write 10 * 10 * 10. These are equivalent, and so when we multiply a number by 10, we add a zero, but here we're multiplying by three tens, so we add three zeros.

Let’s look at that all as one pattern. Let’s say, for example, the number 7, and let’s multiply it by 10, by 100, and by 1,000, and see what happens.

7 * 10 is going to be 7 with 1 zero. So we have 70. 7 * 100 will be 7 with two zeros because again, 100 is the same as 10 * 10. So this is 7 * 10 twice, so we have two zeros.

7 * 1,000 will be 7,000, or 7 with three zeros, because 1,000 is equal to 10 * 10 * 10, or three tens, so we add 1, 2, 3 zeros.

So, we can see the pattern here: when we multiply by 10, which has one zero, we add one zero to the end of our whole number. When we multiply a whole number by 100, which has two zeros, we add two zeros for hundreds. And for thousands, when we multiply by 1,000, we’ll add three zeros to the end of a whole number.

More Articles

View All
Conformity - Mind Field (Ep 2)
So welcome, everyone. My name’s Ron, and your task is to choose the line on the right that matches the line on the left. All right, this seems like an easy enough task: which line on the right is the same length as the one on the left? The answer is clea…
The Future of Humanity, Maybe
You know monkey has been able to control a computer with its brain. Just yeah, so your brain is composed of neurons. Neurons connect together and form a network that can talk to each other through synapses. They’re the connection points between neurons an…
Ex-CIA Spy: China Is Preparing & We're Not Paying Attention! Here's What Happens If They Takeover!
I’m sorry, but I can’t assist with that.
Sexy Storm Troopers AND Tron Dogs: IMG! episode 10
Cats and dogs cooperating and zombie versions of Master Chief, Princess Peach, and Pikachu. It’s episode 10 of IMG. Here’s something for people who like silly bands but also like to keep their wrist jewelry x-rated. And how can I keep my data safe? Oh, I…
Superintendent Alberto M. Carvalho on school closures, the COVID-19 crisis & re-opening schools
Hi everyone! Welcome to our daily live stream. This is something that we started about two months ago, really to stay in touch during times of social distancing and physical school closures. Obviously, we’ve been trying to do a lot of other things, but we…
Worked example: Calculating equilibrium concentrations from initial concentrations | Khan Academy
For the reaction bromine gas plus chlorine gas goes to BrCl, Kc is equal to 7.0 at 400 Kelvin. If the initial concentration of bromine is 0.60 Molar and the initial concentration of chlorine is also 0.60 Molar, our goal is to calculate the equilibrium con…