yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Zeros of polynomials (with factoring): common factor | Polynomial graphs | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

So we're given a p of x; it's a third degree polynomial, and they say plot all the zeros or the x-intercepts of the polynomial in the interactive graph. The reason why they say interactive graph, this is a screenshot from the exercise on Khan Academy, where you could click and place the zeros. But the key here is let's figure out what x values make p of x equal to zero; those are the zeros, and then we can plot them.

So pause this video and see if you can figure that out. The key here is to try to factor this expression right over here, this third degree expression, because really we're trying to solve the x's for which 5x to the third plus 5x squared minus 30x is equal to zero. The way we do that is by factoring this left-hand expression.

So the first thing I always look for is a common factor across all of the terms. It looks like all the terms are divisible by 5x, so let's factor out a 5x. This is going to be 5x times... if we take a 5x out of 5x to the third, we're left with an x squared. If we take out a 5x out of 5x squared, we're left with an x, so plus x. And if we take out a 5x of negative 30x, we're left with a negative 6, is equal to 0.

Now we have 5x times this second degree expression, and to factor that, let's see what two numbers add up to 1. You could view this as a 1x here, and their product is equal to negative 6. Let's see, positive 3 and negative 2 would do the trick. So I can rewrite this as 5x times (x + 3)(x - 2), and if what I just did looks unfamiliar, I encourage you to review factoring quadratics on Khan Academy, and that is all going to be equal to zero.

So if I try to figure out what x values are going to make this whole expression zero, it could be the x values or the x value that makes 5x equal zero. Because if 5x is zero, zero times anything else is going to be zero. So what makes 5x equal zero? Well, if we divide both sides by 5, you're going to get x is equal to 0. And it is the case if x equals 0, this becomes 0, and then it doesn't matter what these are; 0 times anything is 0.

The other possible x value that would make everything 0 is the x value that makes x + 3 equal to 0. Subtract 3 from both sides; you get x is equal to negative 3. And then the other x value is the x value that makes x - 2 equal to 0. Add 2 to both sides; that's going to be x equals 2.

So there you have it; we have identified the three x values that make our polynomial equal to zero, and those are going to be the zeros and the x-intercepts. So we have one at x equals 0, we have one at x equals negative 3, we have one at x equals 2. The reason why we're done now with this exercise, if you're doing some kind of category just clicked in these three places, but the reason why folks find this to be useful is it helps us start to think about what the graph could be, because a graph has to intersect the x-axis at these points.

So the graph might look something like that; it might look something like that. To figure out what it actually does look like, we'd probably want to try out a few more x values in between these x-intercepts to get the general sense of the graph.

More Articles

View All
How Warren Buffett Finds Great Investment Ideas
You really want to have a database in your mind so that you can tell what kind of a business you’re looking at in general by looking at the figures. Uh, it’s far over right. We never look at any analyst reports. I mean, I don’t think I’ve, you know, if I …
2015 AP Calculus AB 2a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let f and g be the functions defined by ( f(x) = 1 + x + e^{x^2 - 2x} ) and ( g(x) = x^4 - 6.5x^2 + 6x + 2 ). Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above. So here I have the graphs of the two functions, and …
Using specific values to test for inverses | Precalculus | Khan Academy
In this video, we’re going to think about function inverses a little bit more, or whether functions are inverses of each other. Specifically, we’re going to think about can we tell that by essentially looking at a few inputs for the functions and a few ou…
Stop Caring About What Isn't Yours: Epictetus’ Lessons from My Novel
Stoic philosopher Epictetus didn’t sugarcoat anything. He was direct and told the listener exactly how it was – at least, from the Stoic perspective. His no-nonsense approach, which becomes apparent when reading what’s left of his lectures, is why I love …
How to Survive a Parachute Jump Without a Parachute #shorts
Your parachute has failed, and you’ll hit the ground in 60 seconds. You’re falling at around 190 km an hour. Your best bet to slow down is increasing your air resistance by making an X shape. We’re not going to lie to you; the odds aren’t great, but here…
Example: Analyzing the difference in distributions | Random variables | AP Statistics | Khan Academy
Suppose that men have a mean height of 178 centimeters, with a standard deviation of 8 centimeters. Women have a mean height of 170 centimeters, with a standard deviation of 6 centimeters. The male and female heights are each normally distributed. We inde…