yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The continents are moving. When will they collide? - Jean-Baptiste P. Koehl


3m read
·Nov 8, 2024

In the early 20th century, a meteorologist named Alfred Wegener noticed striking similarities between the coasts of Africa and South America. These observations led him to propose a controversial new theory: perhaps these and many other continents had once been connected in a single, gigantic landmass. Wegener’s Theory of Continental Drift directly contradicted the popular opinion that Earth’s continents had remained steady for millennia, and it took almost 50 years for his advocates to convince the larger scientific community.

But today, we know something even more exciting— Pangea was only the latest in a long lineage of supercontinents, and it won’t be the last. Continental Drift laid the foundation for our modern theory of plate tectonics, which states that Earth’s crust is made of vast, jagged plates that shift over a layer of partially molten rock called the mantle. These plates only move at rates of around 2.5 to 10 centimeters per year, but those incremental movements shape the planet's surface.

So to determine when a new supercontinent will emerge, we need to predict where these plates are headed. One approach here is to look at how they’ve moved in the past. Geologists can trace the position of continents over time by measuring changes in Earth’s magnetic field. When molten rock cools, its magnetic minerals are “frozen” at a specific point in time. So by calculating the direction and intensity of a given rock’s magnetic field, we can discover the latitude at which it was located at the time of cooling.

But this approach has serious limitations. For one thing, a rock’s magnetic field doesn’t tell us the plate’s longitude, and the latitude measurement could be either north or south. Worse still, this magnetic data gets erased when the rock is reheated, like during continental collisions or volcanic activity. So geologists need to employ other methods to reconstruct the continents’ positions.

Dating local fossils and comparing them to the global fossil record can help identify previously connected regions. The same is true of cracks and other deformations in the Earth's crust, which can sometimes be traced across plates. Using these tools, scientists have pieced together a relatively reliable history of plate movements, and their research revealed a pattern spanning hundreds of millions of years. What’s now known as the Wilson Cycle predicts how continents diverge and reassemble. And it currently predicts the next supercontinent will form 50 to 250 million years from now.

We don’t have much certainty on what that landmass will look like. It could be a new Pangea that emerges from the closing of the Atlantic. Or it might result from the formation of a new Pan-Asian ocean. But while its shape and size remain a mystery, we do know these changes will impact much more than our national borders.

In the past, colliding plates have caused major environmental upheavals. When the Rodinia supercontinent broke up circa 750 million years ago, it left large landmasses vulnerable to weathering. This newly exposed rock absorbed more carbon dioxide from rainfall, eventually removing so much atmospheric CO2 that the planet was plunged into a period called Snowball Earth. Over time, volcanic activity released enough CO2 to melt this ice, but that process took another 4 to 6 million years.

Meanwhile, when the next supercontinent assembles, it's more likely to heat things up. Shifting plates and continental collisions could create and enlarge cracks in the Earth’s crust, potentially releasing huge amounts of carbon and methane into the atmosphere. This influx of greenhouse gases would rapidly heat the planet, possibly triggering a mass extinction. The sheer scale of these cracks would make them almost impossible to plug, and even if we could, the resulting pressure would just create new ruptures.

Fortunately, we have at least 50 million years to come up with a solution here, and we might already be onto something. In Iceland, recently conducted trials were able to store carbon in basalt, rapidly transforming these gases into stone. So it’s possible a global network of pipes could redirect vented gases into basalt outcrops, mitigating some of our emissions now and protecting our supercontinental future.

More Articles

View All
What Sharks Are Tag-Teaming Attacks? | SharkFest
NARRATOR: Historically, shark attacks on Reunion have been rare. Over the previous decade, the annual average was just one incident. But in 2011, the island is in crisis. Mathieu is actually Reunion’s fifth victim this year. And it’s only September. Islan…
How To Think Like A CEO
You can’t see the bigger picture, and you can’t work toward a bigger goal if you’ve got the perspective of a worker. That’s the facts. If your brain isn’t used to thinking like those who are achieving big things, you will struggle to find your footing. Ev…
How To Retire In 10 Years (Starting With $0)
What’s up, Graham? It’s guys here. So, this is a really interesting topic: how to retire in 10 years starting with zero dollars. This is something where, at the core, the concept is incredibly simple. In fact, it’s so basic that I could probably summarize…
LEGO TACO! And Other Great Images -- IMG! Episode #47
Do you consider yourself a fan of dogs? Or cloud ice cream? Well, it’s episode 47 of IMG! This is a mirror and this is clear glass. A broccoli tree house and, with the right outline, Europe can be a dragon. In the early 1900s, Arthur S. Mole and John D. …
Voltage | Physics | Khan Academy
You probably know that power lines are very dangerous because they have very high voltage, right? So we should stay away from them. But then what about these birds? Why don’t they get electrocuted? To answer that question, we need to dig deeper into this …
Nature's 3D Printer: MIND BLOWING Cocoon in Rainforest - Smarter Every Day 94
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, we just got off this boat, and we’re gonna walk for about an hour in the jungle to find a moth pupa. Okay, Phil just found it. So, what are we looking at here? This here is the pupa of a moth c…