yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The continents are moving. When will they collide? - Jean-Baptiste P. Koehl


3m read
·Nov 8, 2024

In the early 20th century, a meteorologist named Alfred Wegener noticed striking similarities between the coasts of Africa and South America. These observations led him to propose a controversial new theory: perhaps these and many other continents had once been connected in a single, gigantic landmass. Wegener’s Theory of Continental Drift directly contradicted the popular opinion that Earth’s continents had remained steady for millennia, and it took almost 50 years for his advocates to convince the larger scientific community.

But today, we know something even more exciting— Pangea was only the latest in a long lineage of supercontinents, and it won’t be the last. Continental Drift laid the foundation for our modern theory of plate tectonics, which states that Earth’s crust is made of vast, jagged plates that shift over a layer of partially molten rock called the mantle. These plates only move at rates of around 2.5 to 10 centimeters per year, but those incremental movements shape the planet's surface.

So to determine when a new supercontinent will emerge, we need to predict where these plates are headed. One approach here is to look at how they’ve moved in the past. Geologists can trace the position of continents over time by measuring changes in Earth’s magnetic field. When molten rock cools, its magnetic minerals are “frozen” at a specific point in time. So by calculating the direction and intensity of a given rock’s magnetic field, we can discover the latitude at which it was located at the time of cooling.

But this approach has serious limitations. For one thing, a rock’s magnetic field doesn’t tell us the plate’s longitude, and the latitude measurement could be either north or south. Worse still, this magnetic data gets erased when the rock is reheated, like during continental collisions or volcanic activity. So geologists need to employ other methods to reconstruct the continents’ positions.

Dating local fossils and comparing them to the global fossil record can help identify previously connected regions. The same is true of cracks and other deformations in the Earth's crust, which can sometimes be traced across plates. Using these tools, scientists have pieced together a relatively reliable history of plate movements, and their research revealed a pattern spanning hundreds of millions of years. What’s now known as the Wilson Cycle predicts how continents diverge and reassemble. And it currently predicts the next supercontinent will form 50 to 250 million years from now.

We don’t have much certainty on what that landmass will look like. It could be a new Pangea that emerges from the closing of the Atlantic. Or it might result from the formation of a new Pan-Asian ocean. But while its shape and size remain a mystery, we do know these changes will impact much more than our national borders.

In the past, colliding plates have caused major environmental upheavals. When the Rodinia supercontinent broke up circa 750 million years ago, it left large landmasses vulnerable to weathering. This newly exposed rock absorbed more carbon dioxide from rainfall, eventually removing so much atmospheric CO2 that the planet was plunged into a period called Snowball Earth. Over time, volcanic activity released enough CO2 to melt this ice, but that process took another 4 to 6 million years.

Meanwhile, when the next supercontinent assembles, it's more likely to heat things up. Shifting plates and continental collisions could create and enlarge cracks in the Earth’s crust, potentially releasing huge amounts of carbon and methane into the atmosphere. This influx of greenhouse gases would rapidly heat the planet, possibly triggering a mass extinction. The sheer scale of these cracks would make them almost impossible to plug, and even if we could, the resulting pressure would just create new ruptures.

Fortunately, we have at least 50 million years to come up with a solution here, and we might already be onto something. In Iceland, recently conducted trials were able to store carbon in basalt, rapidly transforming these gases into stone. So it’s possible a global network of pipes could redirect vented gases into basalt outcrops, mitigating some of our emissions now and protecting our supercontinental future.

More Articles

View All
Why Do Venomous Animals Live In Warm Climates?
[WARNING! SPIDERS IN THE VIDEO] Why are the most venomous species found in the warmest places on Earth? I mean, take Australia for example. Depending on who you ask, it has all or nearly all of the ten most venomous snakes in the world. Plus, the funnel-w…
The Inventor of the First Pyramid | Lost Treasures of Egypt
NARRATOR: 10 miles south of the Great Pyramids of Giza lies the Necropolis of Saqqara. Today, Egyptologist Chris Naunton travels here to investigate what triggered over a thousand years of pyramid building. He’s been granted rare access to explore restric…
McCulloch v. Maryland | Foundations of American democracy | US government and civics | Khan Academy
In this video, we’re going to talk about one of the most important U.S. Supreme Court cases that has helped determine the balance of power between the federal government and the states, and that’s McCulloch versus Maryland. So the year is 1816. After the…
Polar curve area with calculator
What we’re going to try to do is use our powers of calculus to find this blue area right over here. What this blue area is, is the area in between successive loops of the graph. The polar graph ( r(\theta) = 3\theta \sin(\theta) ) I’m graphing it in polar…
Why Paul McCartney Started the "Meat Free Monday" Movement (Exclusive) | National Geographic
[Music] No thank you, no that’s very nice. You’ve been vegetarian for 40 more years, right Tom? Yeah. And not just one day a week, but 24⁄7. Yeah. How has that affected your life? It’s—I love it, you know, and I get mates, you know, and people say, …
Searching For Life in Volcanoes and Other Extreme Environments | Nat Geo Live
JEFFREY MARLOW: As a scientist, we often go to some of the most extreme places on our planet to collect microbes, bring ‘em back, understand what they’re doing and how they work. These types of organisms can actually broaden our search for life beyond ear…