yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Neil and Katy Discuss Fingerprints and Individuality | StarTalk
Why are there seven million people? And why do each one of us have our own fingerprint? Even twins have different fingerprints, who are otherwise genetically identical. Why would you rather we were all the same? No, I’m not. Why is that more odd to you th…
6 WORST Villains EVER!
Vsauce. Michael here today with a special video. It’s a Skype conversation I had with Newt from Underbelly, where he teaches me about six actual villains from real comic books that are really, really lame. He’s joined by a bunch of ladies from Underbelly,…
WTF Just Happened To California?!
Because social media spreads the bad news so incredibly quickly, many people have now become fearful. Beachgoers watched in horror as a violent fight broke out this afternoon. This poor little girl is probably going to need counseling and therapy. I want …
"The ULTIMATE ADVICE For Every Business TRYING TO SCALE" | Kevin O'Leary
But I just think you need to throw out all those playbooks because, like you said, what made sense in the past, it’s not gonna make sense in the future. And when Kind was born, I was this far away from the tower. People have all these perceptions, having …
Safari Live - Day 182 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon ladies and gentlemen, welcome to another Sunday sunset safari here with us in Duma in the Sabi Sands. It is …
The Hazards of High Altitude: A Mistake on the First Attempt | Edge of the Unknown on Disney+
[Music] When you’re climbing on a Himalayan giant, you have no margin for error. Altitude is this invisible, debilitating challenge that you face. Leaning over to even tighten your boots can put you out of breath. Decision-making becomes much slower becau…