yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
2015 AP Physics 1 free response 3b
The spring is now compressed twice as much to Δx = 2D. A student is asked to predict whether the final position of the block will be twice as far at x = 6D. The student reasons that since the spring will be compressed twice as much as before, the block wi…
Warren Buffett's Annual Letter to Shareholders (2021)
Hey guys, welcome back to the channel. In this video, we’re going to be talking through Warren Buffett’s 2020 letter to Berkshire Hathaway shareholders. Of course, he writes one of these every single year. There’s a bit of an update on what he’s thinking …
The water cycle | Ecology | Khan Academy
Let’s talk a little bit about the water cycle, which we’re all familiar with. In fact, we’re all part of the water cycle every moment of our lives. We might not fully appreciate it, so let’s just jump into the cycle. I’ll start with evaporation. So, we c…
Into the Snow Storm: Checking for Predators | Life Below Zero
♪ I turn on all of my lights here. Other than the brush right there, I’m driving in a milk bottle. If this gets any worse, I’m done. So, what I’m gonna do is try to pick my way back, following my tracks. The wind and the snow is just filling them in as ra…
Predator Control | Life Below Zero
My name is Eric Solitaire. I’m a registered guide outfitter, and I operate two lodges in Alaska with my wife, Martha May. We’re gonna go ahead and try a little bit longer distance here and see if we can be comfortable at a 35-yard range. Holes are my same…
This 18th Century Gold Rush Changed How the World Pans for Gold | National Geographic
Gold is the most powerful metal on earth, and Russia is one of the world’s leading suppliers of it. It all began in 1745 when a peasant named Tiara Fade Markov, while looking for crystal, found something else: a tiny gold speck inside a piece of quartz. H…