yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Reflecting functions introduction | Transformations of functions | Algebra 2 | Khan Academy
So what you see here, this is a screenshot of the Desmos online graphing calculator. You can use it at desmos.com, and I encourage you to use this after this video or even while I’m doing this video. But the goal here is to think about the reflection of …
Bill Belichick & Ray Dalio on Picking People: Part 2
In our conversations, one of the things that I liked about what you did, and um, which is what I do, is you get very clear on the specs. You know that people are different, and you make very clear distinctions of what somebody is like, you know. We try to…
Help Khan Academy Double Down On Our Efforts
Hi everyone, Sal Khan here from Khan Academy, and I just wanted to remind you that if you’re in the position to do so, to think about making a donation to Khan Academy. We are a not-for-profit organization, and we can only exist through donations from fol…
James Cameron on Exploration of Deep Sea and Space | StarTalk
So it’s not just you’re interested in the oceans or space; you’ve touched and been touched by engineering and technology. There was a lot about the cameras used for Avatar, but you go farther back than that. Well, yeah, just, I just love engineering. I l…
Snowmobile Inspection | Life Below Zero
Go have a look at the undercarriage. I look for dead shocks, the Fela dead shocks. I want to feel some pressure and some compression. These are feeling good. One of our wear parts on a snow machine is a belt. You can burn them up, bust them, blow them; al…
Example plotting corners of rectangle
The four corners of a rectangle are located at the points (11, 7), (11, 0), (2, 0), and (2, 7). Plot the four corners of the rectangle on the coordinate plane below, and they have these dots, and we can actually move these around for the four corners of o…