yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Living Off the Land in Hawaii | Explorer
People in developed countries often take it for granted that they can eat whatever delicacy they want from anywhere in the world. But there are some who fear that this globalization of food is putting all of us at risk, and they are now going back to livi…
Changing equilibria from trade | APⓇ Microeconomics | Khan Academy
In this video, we’re going to think about how trade can alter the equilibrium price and quantity in a given market. So, what we see here, as we like to do, are very simplified examples of markets in various economies. First, we have Country A, and let’s …
Contour plots | Multivariable calculus | Khan Academy
So I have here a three-dimensional graph, um, and that means that it’s representing some kind of function that has a two-dimensional input and a one-dimensional output. So that might look something like f(x, y) = and then just some expression that has a b…
The Dark Side of Everyday Things | Why We Can't Have Nice Things Anymore
to participate in viral challenges popularized by the platform. These incidents underline a disturbing trend: social media platforms, particularly TikTok, have the potential to influence vulnerable users, especially children, into engaging in dangerous b…
We Fell For The Oldest Lie On The Internet
Look at this fun fact: Did you know that YOUR blood vessels taken together add up to 100,000 kilometers, enough to wrap them around the planet twice? One of our favourite fun facts, used in our book and app and a video and… wait… 100,000 kilometers is lik…
Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy
Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes. Let’s see what’s going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the l…