yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Bitcoin For The Intelligent Layperson. Part One: Context.
[Music] In 2008, an anonymous person going by the name Satoshi Nakamoto wrote a paper describing a protocol for a digital currency called Bitcoin. Bitcoin brought together ideas discussed on the cipherpunk mailing list during the 1990s. The cipherpunks st…
Podcasts have gone too far..
Can guess how many podcasts there are in the world? I listen to two. Too many, that’s what it is. Too many? Yes, everyone has a podcast! K: True. There’s 3.2 million podcasts in case anyone is wondering. What? No, no way! Yeah, 3.2 million podcasts. I …
The Biggest Mistake 20-29 Year Olds Make
This video was made possible by brilliant.org. There are four essential facts that every 20-year-old should know that most are never taught. One: Your energy is a limited resource that you are consciously or unconsciously investing each day. Two: How yo…
How Bad Is Your Cognitive Dissonance?
All right, let’s try this little experiment. Yeah, don’t worry, that’s not gonna be the intro. Okay, so cognitive dissonance. Is there seriously another helicopter? It’s a plane this time. What do you want me to do? Wait, the shelf is right next to me. …
PEACH GOES GAGA! Super Mario Bromance -- Black Nerd Comedy
Hey Vsauce, it’s Lacy and today I’m here with some great news. We’ve introduced a new member to our Vsauce family. Although would you really call us a family? I think we’re more of a collection, like a team, like those people that don’t get chosen for Dod…
What happened to Bitcoin...
What’s up you guys? It’s Crypto Graham here, and I think it’s time we have the talk. You know, it’s been seven months since I made a video discussing the prices of Bitcoin and cryptocurrency. And you know what? I thought I was done. I didn’t think there w…