yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Adding four two digit numbers
What I want to do in this video is try to figure out what 35 plus 22 plus 10 plus 16 is equal to. So, pause this video and see if you can figure that out. All right, now let’s work through this together. Now, as you will learn, there’s many ways to appro…
Solar Eclipse 101 | National Geographic
[Narrator] A solar eclipse happens when a new moon moves between the Earth and the sun, blocking some or all of the sun’s rays from reaching the Earth. By cosmic chance, even though the sun is 400 times wider than the moon, it’s also 400 times farther awa…
The Secrets To Setting Smarter Goals
Did you learn calculus and then get GA, or did you cheat and get the A? Like, it’s like you know the answer to that question. Yeah, like the A isn’t the goal; it’s the representation of your knowledge and your mastery. This is Michael Seibel with Dalton …
Chain rule with the power rule
So we’ve got the function ( f(x) = (2x^3 + 5x^2 - 7)^{88} ) and we want to find the derivative of our function ( f ) with respect to ( x ). Now, the key here is to realize that this function can be viewed as a composition of two functions. How do we do th…
The Indefinite Article | Parts of Speech | Grammar | Khan Academy
Hello grammarians! We’ve talked a little about the difference between these special adjectives, a and an, and the also known as the articles. I want to go a little deeper. Now, we know that “the” is the definite article and “a” or “an” is the indefinite,…
Homeroom with Sal & John B. King Jr. - Tuesday, August 25
Hi everyone! Welcome to the Homeroom live stream. Very excited about the conversation we’re about to have. But before we jump into that, I’ll make a couple of my standard announcements. First of all, just a reminder that Khan Academy is a not-for-profit …