yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
THIS Will Get Bitcoin To 100K - The Future of Crypto | SALT 2021
Okay, we’re right now in New York City. Why? The SALT conference starts in about an hour. This conference is all about crypto, but some of the panels at this year’s conference are all about what is the regulator going to do? Where are we going with Bitcoi…
Affordable Alternatives To Luxury Watches | Teddy Baldassarre
Oh my goodness! I mean, come on! I think you said there needs to be some litigation. There should be some litigation. Just look at that! People have stopped me saying, “Would you want to sell that watch?” No, pretty good knockoff. Teddy, totally [Music]. …
Interpreting bar graphs (alligators) | Math | 3rd grade | Khan Academy
James counted the number of alligators in various local bodies of water and graphed the results. How many fewer alligators are in Bite Swamp than Chomp Lake and Reptile Creek combined? So down here we have this bar graph that Jam somehow survived to crea…
Microbes, Robots, and Ambition - Robin Sloan on His Novel Sourdough
So, this is a kind of a weird jumping-off point, but I listened to you on, I think it was a Mother Jones podcast, and you very briefly mentioned a machine learning experiment for the audiobook. Yeah, could you talk about that a little bit longer? Sure, y…
last words
Hey, Vsauce. Michael here. On December 17th, 1977, Gary Gilmore was executed for murder. He was the first prisoner executed by the United States after a 10-year suspension of the practice. When asked if he had any last words, he simply replied, “let’s do…
Worked example: distance and displacement from position-time graphs | AP Physics 1 | Khan Academy
In other videos, we’ve already talked about the difference between distance and displacement, and we also saw what it meant to plot position versus time. What we’re going to do in this video is use all of those skills. We’re going to look at position vers…