yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
How to keep your online accounts secure
Hi everyone, Sal Khan here, and I’m here with Guemmy Kim, who’s a director of product management at Google in account security. And my question for you, Guemmy, is everyone’s always talking about account security. Why should I or the folks watching care…
PSA: Why it’s a BAD IDEA to pay down your mortgage early!
It’s because of these reasons that’s exactly why I will never pay down my mortgage early. If I have a 30-year loan, I will be making the bare minimum payments and just investing the difference versus ever putting an extra dime towards paying down that loa…
How YOU Can Make Money with NO MONEY! | Ask Mr. Wonderful #7 Kevin O'Leary
Hi Mr. Wonderful. My main question is how do you make money with no money? This is Andrea. Andrea, do we need a quick musical interlude here? [Music] Yeah, that was good. Just, you know, takes the edge off. So how do you come up with a good business idea?…
How To Make the Best To-Do List For School
There’s something just so satisfying about getting things done, you know? Checking the boxes off in your to-do list, walking the dog, sending emails, doing your laundry. You know, it makes you feel good inside. It makes you feel like you’re not as lazy as…
LIVE Office Hours with Sal (Monday, May 2nd)
Hello AP Calculus students! This is Sal Khan of the Khan Academy. As we all know, the AP Calculus exams, both the AB and BC exams, are coming up this Thursday, May fifth. I’m sure you are buzzing with as much excitement as I am. In case you didn’t alread…
Quit Seeking APPROVAL Like a Loser (Stoic SELF-RESPECT) | STOICISM
How often have you felt like you were going through the motions, living your life based on the expectations of others, like you’re an actor continuously seeking approval and validation from an invisible audience? If so, you’re not alone. Like you, million…