yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Are we about to see a DROP in Real Estate Prices?
What’s up you guys? It’s Graham here. So, it’s no surprise the economy is doing better; stocks are higher than ever, and real estate has been going up steadily since 2011. It’s also no surprise that much of that recent momentum was largely fueled by extre…
2015 AP Calculus AB/BC 4ab | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Consider the differential equation: the derivative of y with respect to x is equal to 2x minus y. On the axis provided, sketch a slope field for the given differential equation at the six points indicated. We see 1, 2, 3, 4, 5, 6 points. So what I can d…
Why & How Capitalism Needs to Be Reformed
I see populism as people rising up to reject their leadership. Now, it’s a bad thing. Yes, that they’re not willing to accept the results. I agree with your definition. I agree with your definition. And then also at the same time that that’s happening, t…
A Look Inside Billionaire Seth Klarman's Portfolio
Seth Klarman is one of the most highly respected investors ever. He is a value investor and portfolio manager of the investment partnership, the Baupost Group, founded in 1983. The Baupost Group now manages $7 billion and has average returns of nearly 20%…
YC Startup Talks: Understanding Equity with Jordan Gonen, CEO & Co-founder of Compound
[Music] Well, thank you so much for the kind introduction. Um, it’s really great to meet everyone. Um, I’m Jordan, I’m one of Compound’s founders, and today I’m going to start by talking to you all about my hatred of personal finance. Um, I helped start C…
A Physics Prof Bet Me $10,000 I'm Wrong
I am here to sign a document betting $10,000 that my last video is, in fact, correct. This is the video in question. Some people may have missed it, but in this car, there is no motor, no batteries, no energy source, besides the wind itself. And the count…