yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Courage | The Art of Facing Fear
Sometimes even to live is an act of courage. Seneca. Is kicking your enemy into a large well after screaming “This is Sparta” the Hellenistic embodiment of courage? Well, it could be, looking at the Greek mythological heroes like Achilles and Hector, and …
Multiplying complex numbers graphically example: -1-i | Precalculus | Khan Academy
We are told suppose we multiply a complex number z by negative one minus i. So, this is z right over here. Which point represents the product of z and negative one minus i? Pause this video and see if you can figure that out. All right, now let’s work th…
Civic engagement | Citizenship | High school civics | Khan Academy
[Instructor] Civic engagement is defined as the actions of local leaders and residents to improve their community and the lives of their community members. It’s important to think about these terms pretty broadly. We tend to think about community as a wor…
Adding decimals with ones, tenths and hundredths
Let’s do some more involved examples using decimals. So, let’s say we want to add four and 22 hundredths to 61 and 37 hundredths. Like always, I encourage you to pause the video and try to figure it out on your own. Well, the way that my brain tries to …
LearnStorm Growth Mindset: Animation Director on setting goals
My name is Lisa Labraccio. I’m 32 years old. I am an animation director at Ted Ed. I’ve always wanted to do animation, so it just, at whatever point in high school, when they tell you to start looking at colleges and what you might, where you might want t…
CREEPY WOODY !!! -- IMG! #31
Creepy Woody and this place is great for kids. Wait… It’s episode 31 of IMG! Parents are awesome, except when they play favorites. And here’s Bert in real life. There won’t be any cats in this episode, but there will be zombie jean shorts, rigor mortis gi…