yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
9 CRUCIAL MOMENTS TO ADOPT SILENCE LOCK YOUR MOUTH | STOICISM INSIGHTS
Imagine a world where your silence can speak louder than words, where your calm can overpower the chaos around you. Today we’re diving deep into the art of silence, a concept so powerful yet so underrated in our noisy, hectic world. I want you to think ab…
Charlie Munger Just DOUBLED His Alibaba Position!
Well guys, welcome to the new office. I was actually going to leave. I was going to have Sunday’s video be the first one where we’re actually in the office. But of course, right after I recorded that video, we have big breaking news from the one and only …
Leading and lagging strands in DNA replication | MCAT | Khan Academy
Let’s talk a little bit in more depth about how DNA actually copies itself, how it actually replicates, and we’re going to talk about the actual actors in the process. Now, as I talk about it, I’m going to talk a lot about the three prime and the five pri…
With Horses' Help, Army Veteran Finds Healing in Yellowstone | National Geographic
I served in the US Army for 11 years. I was in 10 Special Forces Group, did all my combat deployments to Afghanistan, been diagnosed with PTSD, pretty bad anxiety, and for a long time, 8 months, I didn’t want to leave the house at all. I went on a horse …
Work at a Startup Expo 2018
Okay, hello everyone, and welcome to Work at a Startup. This is the first time we’ve done this conference since 2012, so it’s a pretty special day for us. I’m really excited to see that we had such an amazing turnout. In a moment, I’m gonna introduce our …
My minimalist productivity setup
[Music] Welcome to where the magic happens. You’ve seen this place before, mostly in the background of these a-roll shots and in b-roll shots where I’m either wasting time or being productive—the only two types of b-roll shots on this entire channel. But …