yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
What If You Were 620 Miles Long?
Let’s talk about double pain. If your body was 620 mil long, pain could be your alarm clock. You could bite your toe at bedtime and then go to sleep; you wouldn’t feel any pain until the signal from your toe reached your brain and woke you up 8 hours late…
The Nightcrawlers Trailer | National Geographic
(ambient music) [President Duterte] In my country, there’s three million drug addicts. I’d be happy to slaughter them to finish the problem. (tense music) [Female News Anchor] Officers have repeatedly been accused of hunting down and executing people, …
How to Find the Right Co-founder
[Music] Hi, I’m Han Stagger, and I’m a partner at White Community. Today, I’m going to be talking about what I think are the most important parts of starting a company, which is finding the right co-founder. So, let’s start by talking about why you shoul…
Position, velocity, and speed | Physics | Khan Academy
Let’s explore the ideas of position, speed, and velocity. So let’s start with an example. We have a car parked here somewhere on the road. What is its position? So let’s start with that. What is its position? Well, the meaning of position is basically lo…
Theravada and Mahayana Buddhism | World History | Khan Academy
What I’d like to do in this video is talk about the major schools of Buddhism as it is practiced today. It can be broadly divided into Theravada Buddhism, which means “school of the elder monks,” and Mahayana Buddhism, which means “great vehicle.” Maha me…
Journey into the Deep Sea - VR | National Geographic
We live on this incredible, unfamiliar blue planet. The ocean is this magical, complex, beautiful place, but almost nobody sees it. [Music] The ocean protects us; it feeds us. Yet few can see how beautiful and powerful that it can be. What we don’t see, w…