yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Multiplying 3-digit by 2-digit numbers | Grade 5 (TX TEKS) | Khan Academy
Let’s get a little bit of practice estimating adding large numbers. So, if someone were to walk up to you on the street and say quickly, “Roughly, what is 49379 plus 250218?” What is that roughly equal to? Sometimes people will put this little squiggly eq…
Comparing P value to significance level for test involving difference of proportions | Khan Academy
A veterinarian is studying a certain disease that seems to be affecting male cats more than female cats. They obtain a random sample of records from 500 cats. They find 24 of the 259 male cats have the disease, while 14 of 241 female cats have the disease…
Stories of Life in Solitary Confinement | Short Film Showcase
[Music] It can either break you or make you. And if it breaks you, you know what? You’re just going to just be broken, physically and mentally. Oh, I haven’t seen a tree or a plant since 2003. The only thing that I’ve seen is a spider in the corner, and …
Function symmetry introduction | Transformations of functions | Algebra 2 | Khan Academy
[Instructor] You’ve likely heard the concept of even and odd numbers, and what we’re going to do in this video is think about even and odd functions. And as you can see, or as you will see, there’s a little bit of a parallel between the two, but there’s…
The Moment That Broke His Memory | The Long Road Home 360
[Music] I don’t think I’ve been just Carl since that day. PTSD to me is not a disorder; that is a reasonable reaction to something traumatic that you have been through. [Music] Looking back, we were also green; we had no idea what we were doing. SolarC…
Payment methods | Consumer credit | Financial Literacy | Khan Academy
Hi everyone! I’m here, and in this video, we’re going to talk a little bit about how you pay for things. You’re probably already familiar with this, but maybe we’ll get into a little bit more detail than you might have fully realized. So, the most basic …