yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Jim Crow part 2 | The Gilded Age (1865-1898) | US History | Khan Academy
So, in the last video, we started talking about the system of Jim Crow segregation, which was a legal form of segregation and denial of voting rights or disenfranchisement that characterized the American South from approximately 1877 to 1954. We finished …
Dividing quadratics by linear expressions with remainders | Algebra 2 | Khan Academy
So if you’ve been watching these videos, you know that we have a lot of scenarios where people seem to be walking up to us on the street and asking us to do math problems, and I guess this will be no different. So let’s say someone walks up to you on the…
15 Things That Whisper "I’m High Class"
A general rule of thumb is that if your name is on your work clothes, you’re working class; if it’s on your office door, you’re middle class; and if it’s on your building, you’re upper class. With that said, here are 15 things that whisper “I’m high class…
A Story of Community and Climate | Explorers Fest
Magic, you are in the tire desert of India. We climb down from the dune, and he shows me this well. It’s a hand-dug well that is giving water not even three feet under. And there’s water there. There are several such wells peppered along the dunes. This i…
Signs of sums on a number line | Integers: Addition and subtraction | 7th grade | Khan Academy
Let’s give ourselves some intuition and then some practice adding negative numbers. So, let’s start with negative 11 plus negative 3. So, first we can visualize what negative 11 looks like on a number line. Like this, I intentionally have not marked off …
What are some things you’ve had to unlearn?
You’d be surprised at how many Founders that we talked to will tell you that nothing they did in their job translates at all to their startup. It’s because you have so much infrastructure inside of Google or Facebook to do your job, and they have their ow…