yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Mohenjo Daro 101 | National Geographic
[Music] The ancient city of Mohenjo-Daro is one of the first urban centers in human history. Nestled in southern Pakistan’s Indus River Valley, Mohenjo-Daro is the largest and best-preserved city of the Indus civilization, the earliest known civilization …
Rule of 70 to approximate population doubling time | AP Environmental Science | Khan Academy
When we’re dealing with population growth rates, an interesting question is how long would it take for a given rate for the population to double. So we’re going to think about doubling time now. If you were to actually calculate it precisely, mathematica…
How to sell a $15,000,000 private jet!
Hey Steve, Daddy’s finally agreed to let me buy my first jet, but he’s only giving me a 15 million budget. 15 million? That’s not so bad! Let’s say you want an airplane, maybe 10 years old or so. All right, let’s see what you recommend. If we take $15 mi…
YC Startup Talks: Understanding Equity with Jordan Gonen, CEO & Co-founder of Compound
[Music] Well, thank you so much for the kind introduction. Um, it’s really great to meet everyone. Um, I’m Jordan, I’m one of Compound’s founders, and today I’m going to start by talking to you all about my hatred of personal finance. Um, I helped start C…
Reham Fagiri and Kalam Dennis at Startup School SV 2016
Welcome back! So, uh, it was an amazing morning. Um, and one of the questions I get asked a lot is, how can we fund both, uh, 10-minute meal kits and quantum computers at the same time? Uh, our secret is that we have a simple focus, which is that we fund …
How to make RISK FREE PROFIT at any age by Flipping Money (Step By Step)
What’s up, you guys? It’s Graham here! So it’s highly requested in one of my last videos; here’s a step-by-step tutorial of exactly how you can make some pretty fun, decent side money at any age with any level of experience. And the best part about all o…