yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Texas Teachers! Here's how to use TEKS-aligned unit guides on Khan Academy
Hello, I’m Jennifer, the Texas professional learning specialist with KH Academy and a former classroom teacher just like you. I am excited to introduce you to the unit guides available in our new TE aligned courses. These guides are designed to support e…
Enthalpy of formation | Thermodynamics | AP Chemistry | Khan Academy
Enthalpy of formation refers to the change in enthalpy for the formation of one mole of a substance from the most stable form of its constituent elements. Change in enthalpy is symbolized by delta H, and the F stands for formation. The superscript naught …
Did The Past Really Happen?
Hey, Vsauce. Michael here. The dog that played Toto in The Wizard of Oz was credited as Toto, but in reality, the dog’s name was Terry. And when Terry died in 1945, her owner and trainer, Carl Spitz, buried her on his ranch in Los Angeles. But in 1958, th…
The Man Behind a Mysterious Miniature Town | Short Film Showcase
Elgyn part. Yes, it’s a very neutral place; there’s no conflict there. It’s colorless. People who look at my photographs will bring their own stories. They’ll say, “Oh, this reminds me of the house that I grew up in.” “We were in a car crash; it looks som…
Most Startups Are Undercharging - Dalton Caldwell
Most of the time, people are way undercharging for their product. For some reason, there are ideas out there that you should either not charge for your product or you charge such a tiny fraction of what you could be charging that you’re not set up for suc…
Apple please watch this. - Frore AirJet MacBook Air
Okay, Apple, I know this is gonna sound a little crazy, but what if the MacBook Air actually moved some air around so it didn’t thermal throttle after two minutes of any kind of work? Well, believe it or not, it can and without even adding any fans. All w…