yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Photographing the Beauty of Life in the Shadow of War | Nat Geo Live
I was working in New York City as a photo editor sitting at my computer all day looking at stories coming in. And I always dreamed of becoming a foreign correspondent. And I got the courage to quit my job and move to the Czech Republic, where I got a job …
The U.S. Faces a Major Debt Problem
I just got off the phone with the president. I talked to him twice today, and after weeks of negotiations, we have come to an agreement in principle. This is House Speaker Kevin McCarthy explaining to the media that finally the Republicans and the Democra…
15 Things Emotionally Intelligent People Don't Do
Hey there, relaxer! We’re starting off today with a little bit of an exercise. Think of a loved one. What do you feel now? Think of a difficult situation. Did your emotions change? If the answer to this question was yes, well, you’re at least a little bi…
Election Night 2024 Important Energy Policy
You know, I think people are missing the boat on this whole energy green debate. Let me put it a different way that I could sell it on a bipartisan basis. China is building gigawatt AI data centers and firing them up with coal plants. They are using that …
I FOUND THE 5 BEST BANK ACCOUNTS OF 2023
What’s up, guys? It’s Graham here. So the time has finally come: saving money is now officially profitable! That’s right; for the first time in my YouTube career, cash is once again King. If you have any amount of savings whatsoever, this applies to you, …
The Hidden Pattern behind all Financial Bubbles
Tulip Mania. Imagine spending the equivalent of a luxury house on a flower. Welcome to the 1630s Netherlands, where tulips became the world’s first documented financial bubble and taught us lessons about market psychology that we’re still ignoring today. …