yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Drawing particulate models of reaction mixtures | Chemical reactions | AP Chemistry | Khan Academy
In a previous video, we used a particulate model like this to understand a reaction—not just understand the reaction, but to balance the chemical reaction as well. When I hand drew these particles, the atoms in this particulate model here, I tried to draw…
Why I'm a Financial Minimalist
What’s up you guys? It’s Graham here. So this is something I’ve never directly addressed before. I’m gonna be getting a lot deeper than I usually go in these types of videos. So let’s just get right into it. This video is being made because several of yo…
Why and how to save | Budgeting & saving | Financial Literacy | Khan Academy
So I’m guessing that you already have a sense that saving money is a good idea. It’s good for a rainy day; that’s why we have an emergency fund. There might be unexpected interruptions to your income or unexpected costs that happen from your car breaking …
Money creation in a fractional reserve system | Financial sector | AP Macroeconomics | Khan Academy
Let’s say for some reason you had lent the government one thousand dollars, and so the government has given you a formally issued piece of paper that says, “Hey, we the government owe you one thousand dollars.” This is issued by the treasury. This could b…
Groups Search for Consensus, Individuals Search for Truth
Truth is very fought over. When we say truth, the biggest problem we’re going to run into is that what society wants for you is not what’s always good for you. Society is the largest group, and groups search for consensus; individuals search for truth. It…
How Do You Photograph One of the World's Most Beautiful Places? | Nat Geo Live
Few years ago, I was called into a meeting—a lunch meeting—and you know, the Geographic told me we’re gonna do this whole issue special on the Greater Yellowstone Ecosystem. And I was asked to become one of the team. And it’s, you know, it’s 50,000 squar…