yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Origins of the Dragon | StarTalk
How good could be unless it’s got dragons? It’s no fantasy unless you have a dragon. Yeah, you need the dragon. Yeah. You need the dragons. And in my home institution, the American Museum of Natural History, we had an exhibit a few years ago that was al…
Safari Live - Day 4 | National Geographic
Viewer discretion is advised. Well, it appears as if it’s blue skies with wonderful white clouds this afternoon and this is Safari Live, ready. Standing by. 5, 4, 3, 2, 1… you are live. You are [Music] live. Good afternoon everyone and welcome to Safari L…
Bradley Cooper attempts to cross a snowy ravine on his own | Running Wild with Bear Grylls
Key things that Bradley needs to remember this morning is all the intricacies of firing that grappling gun. Then he’s got to secure that line; if necessary, use that Vector system to double up that strength. Then he’s got to commit to it and go for it bec…
HANDLING NARCISSISTIC PERSONALITIES: 10 EFFECTIVE STRATEGIES | STOICISM INSIGHTS
Welcome back, Stoicism Insights community. Today we’re delving into a topic that’s both timeless and practical. Ever wondered how the ancient Stoics handled difficult people and challenging situations? Get ready to discover powerful strategies to navigate…
Constructing scatterplots | Representing data | Grade 5 (TX TEKS) | Khan Academy
We’re told that Kendrick drinks juice while he drives to work each day. He recorded the amount of juice he drinks in milliliters and how long, in minutes, his drive took. For his drive this week, he recorded this for five days. So, they give us a little …
Digital and analog information | Information Technologies | High School Physics | Khan Academy
In this video, we’re going to talk about analog versus digital. Something that’s analog can be any value within a given range, while something digital is represented by a number of discrete or separate levels. To distinguish these two ideas, I like to th…