yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Let's get some practice taking sums of infinite geometric series.

So, we have one over here, and just to make sure that we're dealing with the geometric series, let's make sure we have a common ratio.

So, let's see: to go from the first term to the second term, we multiply by ( \frac{1}{3} ). Then, to go to the next term, we are going to multiply by ( \frac{1}{3} ) again, and we're going to keep doing that.

So, we can rewrite the series as ( 8 + 8 \times \frac{1}{3} + 8 \times \left(\frac{1}{3}\right)^2 + 8 \times \left(\frac{1}{3}\right)^3 + \ldots ). Each successive term we multiply by ( \frac{1}{3} ) again.

So, when you look at it this way, you're like, okay, we could write this in sigma notation. This is going to be equal to…

So, the first thing we wrote is equal to this, which is equal to the sum:

The sum can start at zero or at one, depending on how we'd like to do it.

We could say from ( k = 0 ) to infinity. This is an infinite series right here; we’re just going to keep on going forever. So, we have:

[
\sum_{k=0}^{\infty} 8 \times \left(\frac{1}{3}\right)^k
]

Let me just verify that this indeed works, and I always do this just as a reality check, and I encourage you to do the same.

So, when ( k = 0 ), that should be the first term right over here. You get ( 8 \times \left(\frac{1}{3}\right)^0 ), which is indeed ( 8 ).

When ( k = 1 ), that's going to be our second term here. That's going to be ( 8 \times \left(\frac{1}{3}\right)^1 ), which is what we have here.

And so, when ( k = 2 ), that is this term right over here. So, these are all describing the same thing.

Now that we've seen that we can write a geometric series in multiple ways, let's find the sum.

Well, we've seen before, and we proved it in other videos, if you have a sum from ( k = 0 ) to infinity and you have your first term ( a ) times ( r^k ), assuming this converges—so, assuming that the absolute value of your common ratio is less than one—this is what needs to be true for convergence.

This is going to be equal to:

[
\frac{a}{1 - r}
]

This is going to be equal to our first term, which is ( a ), over ( 1 - r ).

If this looks unfamiliar to you, I encourage you to watch the video where we derive the formula for the sum of an infinite geometric series.

But just applying that over here, we are going to get:

This is going to be equal to ( \frac{8}{1 - \frac{1}{3}} ).

We know this is going to converge because the absolute value of ( \frac{1}{3} ) is indeed less than one.

So this is all going to converge to:

[
\frac{8}{1 - \frac{1}{3}} = \frac{8}{\frac{2}{3}} = 8 \times \frac{3}{2} = 12
]

Let's see: this could become, divide ( 8 ) by ( 2 ); that becomes ( 4 ), and so this will become ( 12 ).

More Articles

View All
Meet an Imagineer Who Built a Wish | Podcast | Overheard at National Geographic
[Music] Welcome to My Garage. This is my brain; this is where I have to make the magic happen. Laura Cable is a Disney Imagineer for the last five years, many of them surrounded by blueprints and scale models from her garage here in Los Angeles. Thanks to…
Causation from 1980-2020
From our first lesson focusing on the migration of indigenous people to the land mass that today comprises the United States, we’ve made it all the way to the present. A journey in time of more than 15,000 years. We’ve looked most closely at the last 500 …
The Largest Black Hole in the Universe - Size Comparison
The largest things in the universe are black holes. In contrast to things like planets or stars, they have no physical size limit and can literally grow endlessly. Although, in reality, specific things need to happen to create different kinds of black hol…
How Warren Buffett Finds Great Investment Ideas
You really want to have a database in your mind so that you can tell what kind of a business you’re looking at in general by looking at the figures. Uh, it’s far over right. We never look at any analyst reports. I mean, I don’t think I’ve, you know, if I …
From Summit to Subterranean: Chasing Adventure in San Antonio, Texas | National Geographic
When you’re in the cave, you’re so hyper-focused because there’s no distractions, and so for me, it’s almost meditative. [Music] I started in adventure photography with winter sports. Now I’m here in Texas to find that adventure, but underground. Hi, it…
Combining mixtures example
We’re told a partially filled tank holds 30 liters of gasoline with an 18% concentration of ethanol. A fuel station is selling gasoline with a 25% concentration of ethanol. What volume in liters of the fuel station gasoline would we need to add to the tan…